580 research outputs found

    Syntheses, structures, and mesomorphism of a series of Cu(II) salen complexes with 4-substituted long alkoxy chains

    Get PDF
    This is a preprint of an article whose final and definitive form has been published in the MOLECULAR CRYSTALS AND LIQUID CRYSTALS © 2007 copyright Taylor & Francis; MOLECULAR CRYSTALS AND LIQUID CRYSTALS is available online at : http://www.informaworld.com/openurl?genre=article&issn=1542-1406&volume=466&issue=1&spage=129ArticleMOLECULAR CRYSTALS AND LIQUID CRYSTALS. 466(1): 129-147 (2007)journal articl

    Electronic inhomogeneity and competing phases in electron-doped superconducting Pr0.88LaCe0.12CuO4

    Full text link
    We use neutron scattering to demonstrate that electron-doped superconducting Pr0.88LaCe0.12CuO4 in the underdoped regime is electronically phase separated in the ground state, showing the coexistence of a superconducting phase with a three-dimensional antiferromagnetically ordered phase and a quasi-two-dimensional spin density wave modulation. The Neel temperature of both antiferromagnetic phases decreases linearly with increasing superconducting transition temperature (Tc) and vanishes when optimal superconductivity is achieved. These results indicate that the electron-doped copper oxides are close to a quantum critical point, where the delicate energetic balance between different competing states leads to microscopic heterogeneity.Comment: 14 pages, 4 figures, accepted to Phys. Rev. B as a rapid communicatio

    Neutron Scattering Study of Temperature-Concentration Phase Diagram of (Cu1-xMgx)GeO3

    Full text link
    In doped CuGeO3 systems, such as (Cu1-xZnx)GeO3 and Cu(Ge1-xSix)O3, the spin-Peierls (SP) ordering (T<Tsp) coexists with the antiferromagnetic (AF) phase (T<TN<Tsp). Tsp decreases while TN increases with increasing x in low doping region. For higher x, however, the SP state disappears and only the AF state remains. These features are common for all the doped CuGeO3 systems so far studied, indicating the existence of universal T-x phase diagram. Recently, Masuda et al. carried out comprehensive magnetic susceptibility (chi) measurements of (Cu1-xMgx)GeO3, in which doping concentration can be controlled significantly better than the Zn doped systems. They found that TN suddenly jumps from 3.43 to 3.98K at the critical concentration xc sim 0.023 and that a drop in chi corresponding to the SP ordering also disappears at x>xc. They thus concluded that there is a compositional phase boundary between two distinct magnetic phases. To clarify the nature of two phases, we performed neutron-scattering measurements on (Cu1-xMgx)GeO3 single crystals with various x. Analysis of the data at fixed temperature points as a function of doping concentration has revealed sudden changes of order parameters at the critical concentration xc=0.027 +- 0.001. At finite temperatures below TN, the drastic increase of the AF moment takes place at xc. The spin-Peierls order parameter delta associated with lattice dimerization shows a precipitous decrease at all temperature below Tsp. However, it goes to zero above xc only at the low temperature limit.Comment: 9 pages, 9 figure

    Absence of magnetic field effect on static magnetic order in electron-doped superconductor Nd_{1.86}Ce_{0.14}CuO_4

    Full text link
    Neutron-scattering experiments were performed to study the magnetic field effect on the electron-doped cuprate superconductor Nd_{1.86}Ce_{0.14}CuO_4, which shows the coexistence of magnetic order and superconductivity. The (1/2 3/2 0) magnetic Bragg intensity, which mainly originates from the order of both the Cu and Nd moments at low temperatures, shows no magnetic field dependence when the field is applied perpendicular to the CuO_{2} plane up to 10 T above the upper critical field. This result is significantly different from that reported for the hole-doped cuprate superconductors, in which the quasi-static magnetic order is noticeably enhanced under a magnetic field.Comment: 4 pages, 3 figure

    Involvement of S-nitrosylation of actin in inhibition of neurotransmitter release by nitric oxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of the diffusible messenger nitric oxide (NO) in the regulation of pain transmission is still a debate of matter, pro-nociceptive and/or anti-nociceptive. <it>S</it>-Nitrosylation, the reversible post-translational modification of selective cysteine residues in proteins, has emerged as an important mechanism by which NO acts as a signaling molecule. The occurrence of <it>S</it>-nitrosylation in the spinal cord and its targets that may modulate pain transmission remain unclarified. The "biotin-switch" method and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were employed for identifying <it>S</it>-nitrosylated proteins.</p> <p>Results</p> <p>Here we show that actin was a major protein <it>S</it>-nitrosylated in the spinal cord by the NO donor, <it>S</it>-nitroso-<it>N</it>-acetyl-DL-penicillamine (SNAP). Interestingly, actin was <it>S</it>-nitrosylated, more in the S2 fraction than in the P2 fraction of the spinal homogenate. Treatment of PC12 cells with SNAP caused rapid <it>S</it>-nitrosylation of actin and inhibited dopamine release from the cells. Just like cytochalasin B, which depolymerizes actin, SNAP decreased the amount of filamentous actin cytoskeleton just beneath the membrane. The inhibition of dopamine release was not attenuated by inhibitors of soluble guanylyl cyclase and cGMP-dependent protein kinase.</p> <p>Conclusion</p> <p>The present study demonstrates that actin is a major <it>S</it>-nitrosylated protein in the spinal cord and suggests that NO directly regulates neurotransmitter release by <it>S</it>-nitrosylation in addition to the well-known phosphorylation by cGMP-dependent protein kinase.</p

    Stripe order, depinning, and fluctuations in La1.875_{1.875}Ba0.125_{0.125}CuO4_{4} and La1.875_{1.875}Ba0.075_{0.075}Sr0.050_{0.050}CuO4_{4}

    Full text link
    We present a neutron scattering study of stripe correlations measured on a single crystal of La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}. Within the low-temperature-tetragonal (LTT) phase, superlattice peaks indicative of spin and charge stripe order are observed below 50 K. For excitation energies ω12\hbar\omega\le12 meV, we have characterized the magnetic excitations that emerge from the incommensurate magnetic superlattice peaks. In the ordered state, these excitations are similar to spin waves. Following these excitations as a function of temperature, we find that there is relatively little change in the {\bf Q}-integrated dynamical spin susceptibility for ω10\hbar\omega\sim10 meV as stripe order disappears and then as the structure transforms from LTT to the low-temperature-orthorhombic (LTO) phase. The {\bf Q}-integrated signal at lower energies changes more dramatically through these transitions, as it must in a transformation from an ordered to a disordered state. We argue that the continuous evolution through the transitions provides direct evidence that the incommensurate spin excitations in the disordered state are an indicator of dynamical charge stripes. An interesting feature of the thermal evolution is a variation in the incommensurability of the magnetic scattering. Similar behavior is observed in measurements on a single crystal of La1.875_{1.875}Ba0.075_{0.075}Sr0.050_{0.050}CuO4_{4}; maps of the scattered intensity in a region centered on the antiferromagnetic wave vector and measured at ω=4\hbar\omega=4 meV are well reproduced by a model of disordered stripes with a temperature-dependent mixture of stripe spacings. We discuss the relevance of our results to understanding the magnetic excitations in cuprate superconductors.Comment: 12 pages, 11 figures, 1 tabl
    corecore