394 research outputs found

    NMR relaxation time around a vortex in stripe superconductors

    Full text link
    Site-dependent NMR relaxation time T1(r)T_1({\bf r}) is calculated in the vortex state using the Bogoliubov-de Gennes theory, taking account of possible "field-induced stripe'' states in which the magnetism arises locally around a vortex core in d-wave superconductivity. The recently observed huge enhancement T1−1(r)T_1^{-1}({\bf r}) below TcT_c at a core site in Tl2_2Ba2_2CuO6_6 is explained. The field-induced stripe picture explains consistently other relevant STM and neutron experiments.Comment: 4 pages, 4 figure

    Exchange Frequencies in the 2d Wigner crystal

    Full text link
    Using Path Integral Monte Carlo we have calculated exchange frequencies as electrons undergo ring exchanges in a ``clean'' 2d Wigner crystal as a function of density. The results show agreement with WKB calculations at very low density, but show a more rapid increase with density near melting. Remarkably, the exchange Hamiltonian closely resembles the measured exchanges in 2d He. Using the resulting multi-spin exchange model we find the spin Hamiltonian for r_s \leq 175 \pm 10 is a frustrated antiferromagnetic; its likely ground state is a spin liquid. For lower density the ground state will be ferromagnetic

    Antiferromagnetic order and dielectric gap within the vortex core of antiferromagnetic superconductor

    Full text link
    The structure of a superconducting vortex has been studied theoretically for a dirty antiferromagnetic superconductor (AFSC), modelling an AFSC as a doped semi-metal with s-wave superconducting pairing and antiferromagnetic (dielectric) interaction between electrons (holes). It is also supposed that the quasiparticles dispersion law possesses the property of nesting. The distribution of the superconducting and magnetic order parameters near the vortex core is calculated. It is shown that the antiferromagnetic order, been suppressed at large distances, is restored around the superconducting flux and the vortex core is in fact insulating and antiferromagnetic, in stark contrast to the normal metal cores of traditional superconductors. Moreover, our model calculations predict that as the temperature decreases the flux region of the superconductivity and antiferromagnetism coexistence increases.Comment: 9 pages, 3 Postscript figures,NATO Advanced Research Workshop on "Vortex dynamics in superconductors and other complex systems" Yalta, Crimea, Ukraine, 13-17 September 200

    Quasiparticle structure in antiferromagnetism around the vortex and nuclear magnetic relaxation time

    Full text link
    On the basis of the Bogoliubov-de Gennes theory for the two-dimensional extended Hubbard model, the vortex structure in d-wave superconductors is investigated including the contribution of the induced incommensurate antiferromagnetism around the vortex core. As the on-site repulsive interaction UU increases, the spatial structure of charge and spin changes from the antiferromagnetic state with checkerboard modulation to that with the stripe modulation. By the effect of the induced antiferromagnetic moment, the zero-energy density of states is suppressed, and the vortex core radius increases. We also study the effect of the local density of states (LDOS) change on the site-dependent nuclear relaxation rate T1−1(r)T_1^{-1}({\bf r}). These results are compared with a variety of experiments performed on high TcT_c cuprates.Comment: 10pages, 8 figure

    Early stage scaling in phase ordering kinetics

    Full text link
    A global analysis of the scaling behaviour of a system with a scalar order parameter quenched to zero temperature is obtained by numerical simulation of the Ginzburg-Landau equation with conserved and non conserved order parameter. A rich structure emerges, characterized by early and asymptotic scaling regimes, separated by a crossover. The interplay among different dynamical behaviours is investigated by varying the parameters of the quench and can be interpreted as due to the competition of different dynamical fixed points.Comment: 21 pages, latex, 7 figures available upon request from [email protected]

    Nuclear Spin Relaxation in Hole Doped Two-Leg Ladders

    Full text link
    The nuclear spin-lattice relaxation rate (1/T11/T_{1}) has been measured in the single crystals of hole doped two-leg ladder compounds Sr14−x_{14-x}Cax_{x}Cu24_{24}O41_{41} and in the undoped parent material La6_6Ca8_8Cu24_{24}O41_{41}. Comparison of 1/T11/T_{1} at the Cu and the two distinct oxygen sites revealed that the major spectral weight of low frequency spin fluctuations is located near q∼(π,π)q \sim (\pi, \pi) for most of the temperature and doping ranges investigated. Remarkable difference in the temperature dependence of 1/T11/T_1 for the two oxygen sites in the heavily doped xx=12 sample revealed reduction of singlet correlations between two legs in place of growing antiferromagnetic correlations along the leg direction with increasing temperature. Such behavior is most likely caused by the dissociation of bound hole pairs.Comment: 4 pages. to appear in J. Phys. Soc. Jpn. Vol. 6

    Evidence for Static Magnetism in the Vortex Cores of Ortho-II YBa2_2Cu3_3O6.50_{6.50}

    Full text link
    Evidence for static alternating magnetic fields in the vortex cores of underdoped YBa2_2Cu3_3O6+x_{6+x} is reported. Muon spin rotation measurements of the internal magnetic field distribution of the vortex state of YBa2_2Cu3_3O6.50_{6.50} in applied fields of H=1H = 1 T and H=4H = 4 T reveal a feature in the high-field tail of the field distribution which is not present in optimally doped YBa2_2Cu3_3O6.95_{6.95} and which fits well to a model with static magnetic fields in the vortex cores. The magnitude of the fields is estimated to be 18(2) G and decreases above T=10T = 10 K. We discuss possible origins of the additional vortex core magnetism within the context of existing theories.Comment: Submitted to PRL; corresponding author: [email protected]

    Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor

    Full text link
    One view of the cuprate high-transition temperature (high-Tc) superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles, which stand in one-to-one correspondence with the electrons in ordinary metals - although the theory has to be pushed to its limit. An alternative view is that the electrons organize into collective textures (e.g. charge and spin stripes) which cannot be mapped onto the electrons in ordinary metals. The phase diagram, a complex function of various parameters (temperature, doping and magnetic field), should then be approached using quantum field theories of objects such as textures and strings, rather than point-like electrons. In an external magnetic field, magnetic flux penetrates type-II superconductors via vortices, each carrying one flux quantum. The vortices form lattices of resistive material embedded in the non-resistive superconductor and can reveal the nature of the ground state - e.g. a conventional metal or an ordered, striped phase - which would have appeared had superconductivity not intervened. Knowledge of this ground state clearly provides the most appropriate starting point for a pairing theory. Here we report that for one high-Tc superconductor, the applied field which imposes the vortex lattice, also induces antiferromagnetic order. Ordinary quasiparticle pictures cannot account for the nearly field-independent antiferromagnetic transition temperature revealed by our measurements

    Field-Induced Uniform Antiferromagnetic Order Associated with Superconductivity in Pr1−x_{1-x}LaCex_{x}CuO4−δ_{4-\delta}

    Full text link
    Strong correlation between field-induced antiferromagnetic (AF) order and superconductivity is demonstrated for an electron-doped cuprate superconductor, Pr1−x_{1-x}LaCex_{x}CuO4−δ_{4-\delta} (PLCCO). In addition to the specimen with x=0.11x=0.11 (which is close to the AF phase boundary, x≃0.10x\simeq0.10), we show that the one with x=0.15x=0.15 (Tc≃16T_c\simeq16 K at zero field) also exhibits the field-induced AF order with a reduced magnitude of the induced moment. The uniform muon Knight shift at a low magnetic field (∼102\sim10^2 Oe) indicates that the AF order is not localized within the cores of flux lines, which is in a marked contrast with theoretical prediction for hole-doped cuprates. The presence of anomalous non-diagonal hyperfine coupling between muons and Pr ions is also demonstrated in detail.Comment: 8 pages, 5 figures, to be published in J. Phys. Soc. Jp

    Magnon Heat Transport in (Sr,La)_14Cu_24O_41

    Full text link
    We have measured the thermal heat conductivity kappa of the compounds Sr_14Cu_24O_41 and Ca_9La_5Cu_24O_41 containing doped and undoped spin ladders, respectively. We find a huge anisotropy of both, the size and the temperature dependence of kappa which we interpret in terms of a very large heat conductivity due to the magnetic excitations of the one-dimensional spin ladders. This magnon heat conductivity decreases with increasing hole doping of the ladders. The magnon heat transport is analyzed theoretically using a simple kinetic model. From this analysis we determine the spin gap and the temperature dependent mean free path of the magnons which ranges by several thousand angstroms at low temperature. The relevance of several scattering channels for the magnon transport is discussed.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
    • …
    corecore