456 research outputs found
<Advanced Energy Utilization Division> Structural Energy Bioscience Research Section
3-1. Research Activities in 202
Complex sequencing rules of birdsong can be explained by simple hidden Markov processes
Complex sequencing rules observed in birdsongs provide an opportunity to
investigate the neural mechanism for generating complex sequential behaviors.
To relate the findings from studying birdsongs to other sequential behaviors,
it is crucial to characterize the statistical properties of the sequencing
rules in birdsongs. However, the properties of the sequencing rules in
birdsongs have not yet been fully addressed. In this study, we investigate the
statistical propertiesof the complex birdsong of the Bengalese finch (Lonchura
striata var. domestica). Based on manual-annotated syllable sequences, we first
show that there are significant higher-order context dependencies in Bengalese
finch songs, that is, which syllable appears next depends on more than one
previous syllable. This property is shared with other complex sequential
behaviors. We then analyze acoustic features of the song and show that
higher-order context dependencies can be explained using first-order hidden
state transition dynamics with redundant hidden states. This model corresponds
to hidden Markov models (HMMs), well known statistical models with a large
range of application for time series modeling. The song annotation with these
models with first-order hidden state dynamics agreed well with manual
annotation, the score was comparable to that of a second-order HMM, and
surpassed the zeroth-order model (the Gaussian mixture model (GMM)), which does
not use context information. Our results imply that the hierarchical
representation with hidden state dynamics may underlie the neural
implementation for generating complex sequences with higher-order dependencies
Reductive Catalytic Fractionation of Corn Stover Lignin
Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 °C in methanol and, in the presence or absence of an acid cocatalyst (H₃PO₄ or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residual solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 °C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 °C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 °C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 °C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed that soluble oligomers are formed via solvolysis, followed by further fragmentation on the catalyst surface via hydrogenolysis. Overall, the results show that clear trade-offs exist between the levels of lignin extraction, monomer yields, and carbohydrate retention in the residual solids for different RCF conditions of corn stover.National Science Foundation (U.S.) (1454299
Elucidation of the mode of interaction in the UP1–telomerase RNA–telomeric DNA ternary complex which serves to recruit telomerase to telomeric DNA and to enhance the telomerase activity
We found that UP1, a proteolytic product of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), both enhances and represses the telomerase activity. The formation of the UP1–telomerase RNA–telomeric DNA ternary complex was revealed by a gel retardation experiment. The interactions in the ternary and binary complexes were elucidated by NMR. UP1 has two nucleic acid-binding domains, BD1 and BD2. In the UP1–telomerase RNA binary complex, both BD1 and BD2 interact with telomerase RNA. Interestingly, when telomeric DNA was added to the binary complex, telomeric DNA bound to BD1 in place of telomerase RNA. Thus, BD1 basically binds to telomeric DNA, while BD2 mainly binds to telomerase RNA, which resulted in the formation of the ternary complex. Here, UP1 bridges telomerase and telomeric DNA. It is supposed that UP1/hnRNP A1 serves to recruit telomerase to telomeric DNA through the formation of the ternary complex. A model has been proposed for how hnRNP A1/UP1 contributes to enhancement of the telomerase activity through recruitment and unfolding of the quadruplex of telomeric DNA
Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides
Lasso peptides constitute a class of bioactive peptides sharing a knotted
structure where the C-terminal tail of the peptide is threaded through and
trapped within an N-terminalmacrolactamring. The structural characterization of
lasso structures and differentiation from their unthreaded topoisomers is not
trivial and generally requires the use of complementary biochemical and
spectroscopic methods. Here we investigated two antimicrobial peptides
belonging to the class II lasso peptide family and their corresponding
unthreaded topoisomers: microcin J25 (MccJ25), which is known to yield
two-peptide product ions specific of the lasso structure under collisioninduced
dissociation (CID), and capistruin, for which CID does not permit to
unambiguously assign the lasso structure. The two pairs of topoisomers were
analyzed by electrospray ionization Fourier transform ion cyclotron resonance
mass spectrometry (ESI-FTICR MS) upon CID, infrared multiple photon
dissociation (IRMPD), and electron capture dissociation (ECD). CID and
ECDspectra clearly permitted to differentiate MccJ25 from its non-lasso
topoisomer MccJ25-Icm, while for capistruin, only ECD was informative and
showed different extent of hydrogen migration (formation of c\bullet/z from
c/z\bullet) for the threaded and unthreaded topoisomers. The ECD spectra of the
triply-charged MccJ25 and MccJ25-lcm showed a series of radical b-type product
ions {\eth}b0In{\TH}. We proposed that these ions are specific of
cyclic-branched peptides and result from a dual c/z\bullet and y/b
dissociation, in the ring and in the tail, respectively. This work shows the
potentiality of ECD for structural characterization of peptide topoisomers, as
well as the effect of conformation on hydrogen migration subsequent to electron
capture
A monoclonal antibody to the insect prothoracicotropic hormone
The prothoracicotropic hormone (PTTH) is an insect cerebral peptide that stimulates the prothoracic glands to produce the steroid hormone ecdysone thus initiating molting and metamorphosis. "Big" PTTH, one of several molecular forms of the neurohormone, was isolated from brains of the tobacco hornworm Manduca sexta, and fractionated by high-pressure liquid chromatography (HPLC) for use in antibody production. A murine polyclonal antiserum and a monoclonal antibody (MAb) have been generated using this highly purified preparation of big PTTH. Antisera and hybridoma supernatants were screened with an indirect, brain whole-mount immunocytological assay, and antibody specificity was confirmed by immunocytological, ELISA, and functional criteria. In brain whole-mount preparations, the MAb (A2H5) and antiserum specifically immunostained the lateral protocerebral neurosecretory cells (L-NSC III), the prothoracicotropes, which produce PTTH. This immunostaining was blocked by preadsorbing the antibodies with big PTTH. Analysis of the elution of HPLC-fractionated big PTTH with an in vitro bioassay for the neurohormone and an ELISA employing the A2H5 MAb resulted in peaks of activity that were superimposable. Finally, the antiserum and A2H5 MAb inhibited big PTTH activation of the prothoracic glands to synthesize ecdysone in the in vitro bioassay for the neurohormone. With these specific antibodies, the organization of the PTTH neuroendocrine axis has been defined. It is now evident that both of the peptidergic neurons that comprise the L-NSC III are prothoracicotropes, and that the corpora allata are the neurohemal organs for the release of big PTTH into the hemolymph. This study indicates that these specific antibodies will be useful in investigations of numerous aspects of the biology of this cerebral neuroendocrine axis
- …