12 research outputs found

    Kuprit ásványok lehetséges alkalmazásai a kémiában - anyagtudományi jellemzés: Cuprite minerals – investigation of material properties and possible applications in chemistry

    Get PDF
    Synthetic copper (I) oxide is widely used in industry and research as a pigment, fungicide, antimicrobial agent, solar cell, catalyst, photocatalyst, gas sensor etc. As with many other synthetic materials, the process of producing Cu2O can require high chemical, thermal, and electrical energy. Therefore, exploiting the characteristics of minerals found in nature promises to be a more cost-effective and environmentally friendly way to obtain Cu2O. The present work focuses on the naturally occurring mineral equivalent of copper (I) oxide, cuprite. It is presented a possible processing method of the mineral, a wide range investigation of the material characteristics and based on the found structural, morphological and optical properties, the potential applicability. Kivonat A szintetikus réz(I)-oxid széles körű felhasználásnak örvend az iparban és a kutatásban egyaránt, mint pigment, gombaölő szer, antimikrobiális szer, napelem alkotó, katalizátor, fotokatalizátor, gáz szenzor stb. Mint sok más szintetikus anyag esetében, a Cu2O előállításakor is a folyamat magas vegyianyag, hő- és elektromos energia ígényű lehet. Ahhoz, hogy költséghatékonyabb és környezetbarátabb úton tegyünk szert rá, jó alternatívának ígérkezik a természetben megtalálható ásványok jellemzőinek kiaknázása. Jelen munka középpontjában a réz(I)-oxid természetben megtalálható, ásványi eredetű megfelelője áll, a kuprit. Az ásvány lehetséges feldolgozási módszere, széles körű anyagjellemzése és a megismert szerkezeti, morfológiai és optikai tulajdonságok alapján a potenciális felhasználhatóság kerül bemutatásra

    Examination of the photocatalytic activity of differently shaped bismuth tungstate microcrystals

    Get PDF
    In this study, Bi2WO6 photocatalysts with different morphologies were obtained by a one-step hydrothermal method. The resulted 3D structures (e.g. “flowers”) (d ≈ 2 µm) consisted from individual nanoplates. The synthesis procedure involved acetic acid, a surfactant (Triton X100) and a shaping agent, such as urea, thiourea and glycine. The effect of these compounds were also investigated in-detail. The crystallization was performed using the well-known hydrothermal method. The above mentioned morphological changes significantly influenced the photocatalytic activity, which was evaluated successfully by the degradation of Rhodamine B (RhB) under UV irradiation

    Különböző polaritású adalékanyaggal előállított nagy fotokatalitikus aktivitású bizmut-volframát előállítása és vizsgálata

    Get PDF
    In this study, Bi2WO6 photocatalysts with different morphologies were obtained by a one-step hydrothermal method. The resulted 3D structures consisted from individual nanoplates. The synthesis procedure involved acetic acid, a surfactant (Triton X-100) and a shaping agent, such as urea, thiourea acetamide and thioacetamide. The effect of these compounds were also investigated in-detail. The above mentioned morphological changes significantly influenced the photocatalytic activity, which was evaluated successfully by the degradation of Rhodamine B (RhB) under visible lightirradiation

    Különböző polaritású adalékanyaggal előállított nagy fotokatalitikus aktivitású bizmut-volframát előállítása és vizsgálata

    Get PDF
    In this study, Bi2WO6 photocatalysts with different morphologies were obtained by a one-step hydrothermal method. The resulted 3D structures consisted from individual nanoplates. The synthesis procedure involved acetic acid, a surfactant (Triton X-100) and a shaping agent, such as urea, thiourea acetamide and thioacetamide. The effect of these compounds were also investigated in-detail. The above mentioned morphological changes significantly influenced the photocatalytic activity, which was evaluated successfully by the degradation of Rhodamine B (RhB) under visible lightirradiation

    Examination of the Photocatalytic Activity of Differently Shaped Bismuth Tungstate Microcrystals

    Get PDF
    In this study, Bi2WO6 photocatalysts with different morphologies were obtained by a one-step hydrothermal method. The resulted 3D structures (e.g. “flowers”) (d ≈ 2 µm) consisted from individual nanoplates. The synthesis procedure involved acetic acid, a surfactant (Triton X100) and a shaping agent, such as urea, thiourea and glycine. The effect of these compounds were also investigated in-detail. The crystallization was performed using the well-known hydrothermal method. The above mentioned morphological changes significantly influenced the photocatalytic activity, which was evaluated successfully by the degradation of Rhodamine B (RhB) under UV irradiation
    corecore