64 research outputs found
Synthesis of glycopeptides and glycopeptide conjugates
Protein glycosylation is a key post-translational modification important to many facets of biology. Glycosylation can have critical effects on protein conformation, uptake and intracellular routing. In immunology, glycosylation of antigens has been shown to play a role in self/non-self distinction and the effective uptake of antigens. Improperly glycosylated proteins and peptide fragments, for instance those produced by cancerous cells, are also prime candidates for vaccine design. To study these processes, access to peptides bearing well-defined glycans is of critical importance. In this review, the key approaches towards synthetic, well-defined glycopeptides, are described, with a focus on peptides useful for and used in immunological studies. Special attention is given to the glycoconjugation approaches that have been developed in recent years, as these enable rapid synthesis of various (unnatural) glycopeptides, enabling powerful carbohydrate structure/activity studies. These techniques, combined with more traditional total synthesis and chemoenzymatic methods for the production of glycopeptides, should help unravel some of the complexities of glycobiology in the near future.NWOBBoL grantBio-organic Synthesi
Going Native: Synthesis of Glycoproteins and Glycopeptides via Native Linkages To Study Glycan-Specific Roles in the Immune System
Glycosylation plays a myriad of roles in the immune system: Certain glycans can interact with specific immune receptors to kickstart a pro-inflammatory response, whereas other glycans can do precisely the opposite and ameliorate the immune response. Specific glycans and glycoforms can themselves become the targets of the adaptive immune system, leading to potent antiglycan responses that can lead to the killing of altered self- or pathogenic species. This hydra-like set of roles glycans play is of particular importance in cancer immunity, where it influences the anticancer immune response, likely playing pivotal roles in tumor survival or clearance. The complexity of carbohydrate biology requires synthetic access to glycoproteins and glycopeptides that harbor homogeneous glycans allowing the probing of these systems with high precision. One particular complicating factor in this is that these synthetic structures are required to be as close to the native structures as possible, as non-native linkages can themselves elicit immune responses. In this Review, we discuss examples and current strategies for the synthesis of natively linked single glycoforms of peptides and proteins that have enabled researchers to gain new insights into glycoimmunology, with a particular focus on the application of these reagents in cancer immunology.Bio-organic Synthesi
Chemical biology of antigen presentation by MHC molecules
Bio-organic Synthesi
Localization of active endogenous and exogenous beta-glucocerebrosidase by correlative light-electron microscopy in human fibroblasts
beta-Glucocerebrosidase (GBA) is the enzyme that degrades glucosylceramide in lysosomes. Defects in GBA that result in overall loss of enzymatic activity give rise to the lysosomal storage disorder Gaucher disease, which is characterized by the accumulation of glucosylceramide in tissue macrophages. Gaucher disease is currently treated by infusion of mannose receptor-targeted recombinant GBA. The recombinant GBA is thought to reach the lysosomes of macrophages, based on the impressive clinical response that is observed in Gaucher patients (type 1) receiving this enzyme replacement therapy. In this study, we used cyclophellitol-derived activity-based probes (ABPs) with a fluorescent reporter that irreversibly bind to the catalytic pocket of GBA, to visualize the active enzymes in a correlative microscopy approach. The uptake of pre-labeled recombinant enzyme was monitored by fluorescence and electron microscopy in human fibroblasts that stably expressed the mannose receptor. The endogenous active enzyme was simultaneously visualized by in situ labeling with the ABP containing an orthogonal fluorophore. This method revealed the efficient delivery of recombinant GBA to lysosomal target compartments that contained endogenous active enzyme
Chemical Tools for Studying TLR Signaling Dynamics
Therapeutic cell differentiatio
Localization of active endogenous and exogenous beta-glucocerebrosidase by correlative light-electron microscopy in human fibroblasts
beta-Glucocerebrosidase (GBA) is the enzyme that degrades glucosylceramide in lysosomes. Defects in GBA that result in overall loss of enzymatic activity give rise to the lysosomal storage disorder Gaucher disease, which is characterized by the accumulation of glucosylceramide in tissue macrophages. Gaucher disease is currently treated by infusion of mannose receptor-targeted recombinant GBA. The recombinant GBA is thought to reach the lysosomes of macrophages, based on the impressive clinical response that is observed in Gaucher patients (type 1) receiving this enzyme replacement therapy. In this study, we used cyclophellitol-derived activity-based probes (ABPs) with a fluorescent reporter that irreversibly bind to the catalytic pocket of GBA, to visualize the active enzymes in a correlative microscopy approach. The uptake of pre-labeled recombinant enzyme was monitored by fluorescence and electron microscopy in human fibroblasts that stably expressed the mannose receptor. The endogenous active enzyme was simultaneously visualized by in situ labeling with the ABP containing an orthogonal fluorophore. This method revealed the efficient delivery of recombinant GBA to lysosomal target compartments that contained endogenous active enzyme
The potential of bioorthogonal chemistry for correlative light and electron microscopy: a call to arms
Bio-organic Synthesi
An alternative model for type I interferon induction downstream of human TLR2
Surface-exposed Toll-like receptors (TLRs) such as TLR2 and TLR4 survey the extracellular environment for pathogens. TLR activation initiates the production of various cytokines and chemokines including type I interferons (IFN-I). Downstream of TLR4, IFNβ secretion is only vigorously triggered in macrophages when the receptor undergoes endocytosis and switches signaling adaptor; surface TLR4 engagement predominantly induces proinflammatory cytokines via the signaling adaptor MyD88. It is unclear if this dichotomy is generally applicable to other TLRs, cell types, or differentiation states. Here, we report that diverse TLR2 ligands induce an IFN-I response in human monocyte-like cells, but not in differentiated macrophages. This TLR2-dependent IFN-I signaling originates from the cell surface and is dependent on MyD88; it involves combined activation of the transcription factors IRF3 and NF-κB, driven by the kinases TBK1 and TAK1-IKKβ, respectively. TLR2-stimulated monocytes produced modest IFNβ levels that caused productive downstream signaling, reflected by STAT1-phosphorylation and expression of numerous interferon-stimulated genes (ISGs). Our findings reveal that the outcome of TLR2 signaling includes an IFN-I response in human monocytes, which is lost upon macrophage differentiation, and differs mechanistically from IFN-I-induction through TLR4. These findings point to molecular mechanisms tailored to the differentiation state of a cell and the nature of receptors activated to control and limit TLR-triggered IFN-I responses.Bio-organic Synthesi
Metabolic labeling probes for interrogation of the host-pathogen interaction
Bacterial infections are still one of the leading causes of death worldwide; despite the near-ubiquitous availability of antibiotics. With antibiotic resistance on the rise, there is an urgent need for novel classes of antibiotic drugs. One particularly troublesome class of bacteria are those that have evolved highly efficacious mechanisms for surviving inside the host. These contribute to their virulence by immune evasion, and make them harder to treat with antibiotics due to their residence inside intracellular membrane-limited compartments. This has sparked the development of new chemical reporter molecules and bioorthogonal probes that can be metabolically incorporated into bacteria to provide insights into their activity status. In this review, we provide an overview of several classes of metabolic labeling probes capable of targeting either the peptidoglycan cell wall, the mycomembrane of mycobacteria and corynebacteria, or specific bacterial proteins. In addition, we highlight several important insights that have been made using these metabolic labeling probes.Microbial Biotechnolog
Synthetic methodology towards allylic trans-cyclooctene-ethers enables modification of carbohydrates: bioorthogonal manipulation of the lac repressor.
The inverse electron-demand Diels-Alder (IEDDA) pyridazine elimination is one of the key bioorthogonal bond-breaking reactions. In this reaction trans-cyclooctene (TCO) serves as a tetrazine responsive caging moiety for amines, carboxylic acids and alcohols. One issue to date has been the lack of synthetic methods towards TCO ethers from functionalized (aliphatic) alcohols, thereby restricting bioorthogonal utilization. Two novel reagents were developed to enable controlled formation of cis-cyclooctene (CCO) ethers, followed by optimized photochemical isomerization to obtain TCO ethers. The method was exemplified by the controlled bioorthogonal activation of the lac operon system in E. coli using a TCO-ether-modified carbohydrate inducer.Bio-organic Synthesi
- …