275 research outputs found

    Disorder induced rounding of the phase transition in the large q-state Potts model

    Full text link
    The phase transition in the q-state Potts model with homogeneous ferromagnetic couplings is strongly first order for large q, while is rounded in the presence of quenched disorder. Here we study this phenomenon on different two-dimensional lattices by using the fact that the partition function of the model is dominated by a single diagram of the high-temperature expansion, which is calculated by an efficient combinatorial optimization algorithm. For a given finite sample with discrete randomness the free energy is a pice-wise linear function of the temperature, which is rounded after averaging, however the discontinuity of the internal energy at the transition point (i.e. the latent heat) stays finite even in the thermodynamic limit. For a continuous disorder, instead, the latent heat vanishes. At the phase transition point the dominant diagram percolates and the total magnetic moment is related to the size of the percolating cluster. Its fractal dimension is found d_f=(5+\sqrt{5})/4 and it is independent of the type of the lattice and the form of disorder. We argue that the critical behavior is exclusively determined by disorder and the corresponding fixed point is the isotropic version of the so called infinite randomness fixed point, which is realized in random quantum spin chains. From this mapping we conjecture the values of the critical exponents as \beta=2-d_f, \beta_s=1/2 and \nu=1.Comment: 12 pages, 12 figures, version as publishe

    Crossing bonds in the random-cluster model

    Full text link
    We derive the scaling dimension associated with crossing bonds in the random-cluster representation of the two-dimensional Potts model, by means of a mapping on the Coulomb gas. The scaling field associated with crossing bonds appears to be irrelevant, on the critical as well as on the tricritical branch. The latter result stands in a remarkable contrast with the existing result for the tricritical O(n) model that crossing bonds are relevant. In order to obtain independent confirmation of the Coulomb gas result for the crossing-bond exponent, we perform a finite-size-scaling analysis based on numerical transfer-matrix calculations.Comment: 2 figure

    Potts and percolation models on bowtie lattices

    Full text link
    We give the exact critical frontier of the Potts model on bowtie lattices. For the case of q=1q=1, the critical frontier yields the thresholds of bond percolation on these lattices, which are exactly consistent with the results given by Ziff et al [J. Phys. A 39, 15083 (2006)]. For the q=2q=2 Potts model on the bowtie-A lattice, the critical point is in agreement with that of the Ising model on this lattice, which has been exactly solved. Furthermore, we do extensive Monte Carlo simulations of Potts model on the bowtie-A lattice with noninteger qq. Our numerical results, which are accurate up to 7 significant digits, are consistent with the theoretical predictions. We also simulate the site percolation on the bowtie-A lattice, and the threshold is sc=0.5479148(7)s_c=0.5479148(7). In the simulations of bond percolation and site percolation, we find that the shape-dependent properties of the percolation model on the bowtie-A lattice are somewhat different from those of an isotropic lattice, which may be caused by the anisotropy of the lattice.Comment: 18 pages, 9 figures and 3 table

    Rounding of first-order phase transitions and optimal cooperation in scale-free networks

    Full text link
    We consider the ferromagnetic large-qq state Potts model in complex evolving networks, which is equivalent to an optimal cooperation problem, in which the agents try to optimize the total sum of pair cooperation benefits and the supports of independent projects. The agents are found to be typically of two kinds: a fraction of mm (being the magnetization of the Potts model) belongs to a large cooperating cluster, whereas the others are isolated one man's projects. It is shown rigorously that the homogeneous model has a strongly first-order phase transition, which turns to second-order for random interactions (benefits), the properties of which are studied numerically on the Barab\'asi-Albert network. The distribution of finite-size transition points is characterized by a shift exponent, 1/ν~=.26(1)1/\tilde{\nu}'=.26(1), and by a different width exponent, 1/ν=.18(1)1/\nu'=.18(1), whereas the magnetization at the transition point scales with the size of the network, NN, as: mNxm\sim N^{-x}, with x=.66(1)x=.66(1).Comment: 8 pages, 6 figure

    Local Statistics of Realizable Vertex Models

    Full text link
    We study planar "vertex" models, which are probability measures on edge subsets of a planar graph, satisfying certain constraints at each vertex, examples including dimer model, and 1-2 model, which we will define. We express the local statistics of a large class of vertex models on a finite hexagonal lattice as a linear combination of the local statistics of dimers on the corresponding Fisher graph, with the help of a generalized holographic algorithm. Using an n×nn\times n torus to approximate the periodic infinite graph, we give an explicit integral formula for the free energy and local statistics for configurations of the vertex model on an infinite bi-periodic graph. As an example, we simulate the 1-2 model by the technique of Glauber dynamics

    Density of critical clusters in strips of strongly disordered systems

    Full text link
    We consider two models with disorder dominated critical points and study the distribution of clusters which are confined in strips and touch one or both boundaries. For the classical random bond Potts model in the large-q limit we study optimal Fortuin-Kasteleyn clusters by combinatorial optimization algorithm. For the random transverse-field Ising chain clusters are defined and calculated through the strong disorder renormalization group method. The numerically calculated density profiles close to the boundaries are shown to follow scaling predictions. For the random bond Potts model we have obtained accurate numerical estimates for the critical exponents and demonstrated that the density profiles are well described by conformal formulae.Comment: 9 pages, 9 figure

    Generalized Geometric Cluster Algorithm for Fluid Simulation

    Full text link
    We present a detailed description of the generalized geometric cluster algorithm for the efficient simulation of continuum fluids. The connection with well-known cluster algorithms for lattice spin models is discussed, and an explicit full cluster decomposition is derived for a particle configuration in a fluid. We investigate a number of basic properties of the geometric cluster algorithm, including the dependence of the cluster-size distribution on density and temperature. Practical aspects of its implementation and possible extensions are discussed. The capabilities and efficiency of our approach are illustrated by means of two example studies.Comment: Accepted for publication in Phys. Rev. E. Follow-up to cond-mat/041274

    Logarithmic conformal field theory with boundary

    Full text link
    This lecture note covers topics on boundary conformal field theory, modular transformations and the Verlinde formula, and boundary logarithmic CFT. An introductory review on CFT with boundary and a discussion of its applications to logarithmic cases are given. LCFT at c=2c=-2 is mainly discussed.Comment: 38 pages, 4 figures, LaTeX. Notes of lectures at the International Summer School on Logarithmic Conformal Field Theory and its Applications, Sept. 2001, IPM, Tehran. Typos fixe

    Coulomb and Liquid Dimer Models in Three Dimensions

    Full text link
    We study classical hard-core dimer models on three-dimensional lattices using analytical approaches and Monte Carlo simulations. On the bipartite cubic lattice, a local gauge field generalization of the height representation used on the square lattice predicts that the dimers are in a critical Coulomb phase with algebraic, dipolar, correlations, in excellent agreement with our large-scale Monte Carlo simulations. The non-bipartite FCC and Fisher lattices lack such a representation, and we find that these models have both confined and exponentially deconfined but no critical phases. We conjecture that extended critical phases are realized only on bipartite lattices, even in higher dimensions.Comment: 4 pages with corrections and update

    Critical line of an n-component cubic model

    Full text link
    We consider a special case of the n-component cubic model on the square lattice, for which an expansion exists in Ising-like graphs. We construct a transfer matrix and perform a finite-size-scaling analysis to determine the critical points for several values of n. Furthermore we determine several universal quantities, including three critical exponents. For n<2, these results agree well with the theoretical predictions for the critical O(n) branch. This model is also a special case of the (Nα,NβN_\alpha,N_\beta) model of Domany and Riedel. It appears that the self-dual plane of the latter model contains the exactly known critical points of the n=1 and 2 cubic models. For this reason we have checked whether this is also the case for 1<n<2. However, this possibility is excluded by our numerical results
    corecore