6 research outputs found

    Behavior of RC Wide Beams under Eccentric Loading

    Get PDF
    Wide beams are one of the widely used structural elements in RC buildings due to the many special features that characterize them. The main objective of this research is to investigate the behavior of wide shallow beams under the effect of eccentric loading acting along their cross sections. To achieve that, an experimental program that consisted of seven wide beams was conducted. All beams were loaded using two concentrated loads at their middle third where the main parameters considered were: the magnitude of the load eccentricity, the longitudinal spacing between shear reinforcement, and the arrangement of the longitudinal reinforcement. Following that, a finite element analysis was performed where the analytical model used was first verified using the data from the experimental program. The results from both the experimental and analytical programs were in good agreement. Then, the finite element analysis was extended through a parametric study where other variables were studies such as the compressive strength of concrete, the transverse spacing between stirrups and the longitudinal reinforcement ratio. The results showed that the value of the load eccentricity, spacing between shear reinforcement, the arrangement of the main reinforcement along the beam cross section, and the compressive strength of concrete significantly affected the torsional resistance of shallow wide beams. Conclusions and recommendations are presented which can be useful for future researchers. Doi: 10.28991/cej-2021-03091766 Full Text: PD

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Behavior of Reinforced Concrete Deep Beams with Openings under Vertical Loads Using Strut and Tie Model

    Get PDF
    This research aims to study the effects of the size and location of openings on deep beams. The analysis of deep beams with openings presents a rather complex problem for engineers, as there are currently no guidelines within the design codes for this problem. Using the strut and tie model is a feasible solution, but also gives some uncertainties due to the various models that can be used. This paper proposes using a strut and tie model for the deep beams with openings where reinforcement is laid out in the form of embedded struts and ties. The study is divided into an experimental and a numerical part. The experimental study was conducted on eight reinforced concrete deep beams under vertical loads. Seven of the beams had web openings of different sizes and locations, while the eighth specimen was a reference beam without any openings. The beams had the same concrete dimensions with the size of the openings in the web taken as 150 150 mm and 300 300 mm, and the location of the opening in the horizontal direction was varied between 0.11 to 0.4 the span. The experimental results were analyzed in terms of cracking pattern, mode of failure, and load-deflection behavior and then compared to numerical analysis conducted using a finite element program. A parametric study followed to investigate the influence of reinforcement arrangement and reinforcement around the openings on the behavior of deep beams. The results showed that large web openings that directly interrupted the compression strut had the most reduction in beam capacity and that the location of the opening did not significantly affect the strength of the beam in the case of small openings. Doi: 10.28991/CEJ-SP2021-07-011 Full Text: PD

    A New Intelligent Fractional-Order Load Frequency Control for Interconnected Modern Power Systems with Virtual Inertia Control

    No full text
    Since modern power systems are susceptible to undesirable frequency oscillations caused by uncertainties in renewable energy sources (RESs) and loads, load frequency control (LFC) has a crucial role to get these systems’ frequency stability back. However, existing LFC techniques may not be sufficient to confront the key challenge arising from the low-inertia issue, which is due to the integration of high-penetration RESs. Therefore, to address this issue, this study proposes an optimized intelligent fractional-order integral (iFOI) controller for the LFC of a two-area interconnected modern power system with the implementation of virtual inertia control (VIC). Here, the proposed iFOI controller is optimally designed using an efficient metaheuristic optimization technique, called the gray wolf optimization (GWO) algorithm, which provides minimum values for system frequency deviations and tie-line power deviation. Moreover, the effectiveness of the proposed optimal iFOI controller is confirmed by contrasting its performance with other control techniques utilized in the literature, such as the integral controller and FOI controller, which are also designed in this study, under load/RES fluctuations. Compared to these control techniques from the literature for several scenarios, the simulation results produced by the MATLAB software have demonstrated the efficacy and resilience of the proposed optimal iFOI controller based on the GWO. Additionally, the effectiveness of the proposed controller design in regulating the frequency of interconnected modern power systems with the application of VIC is confirmed

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    corecore