10 research outputs found

    The Effect of Ammonia on Frozen Foods

    Get PDF
    On March 3, 1962, a liquid-ammonia line broke in the frozen food storage room at the University of Tennessee Food Technology Department, and exposed the foods in the 0° F storage room to ammonia. Customers of the Department complained that the flavor and odor of the foods had been ruined. In January 1964, the same type of accident occurred on a commercial scale. A liquid-ammonia line broke in the 0° F storage room at a commercial company in Knoxville, Tennessee. The room was 30 by 60 by 15 feet (approximately 2700 cubic feet), and the amount of ammonia liberated was estimated to be 100 pounds. The break was in the corner of the room next to the door, which appeared to expose the stored food to different concentrations of ammonia. Experiments were made to compare the foods with similar fresh-frozen foods and to measure the effect on the foods\u27 acceptability. This study was made in an attempt to (1) illustrate the buffer effect on foods, (2) determine the effect of ammonia on the physical characteristics of three different foods: ground beef, strawberries, and green beans, (3) determine the effect of ammonia on the organoleptic qualities of these three foods, (4) compare the permeability of four different package materials to ammonia, and (5) elucidate the rate at which ammonia is able to penetrate into these three foods wrapped in wax paper

    The role of non-operative management (NOM) in blunt hepatic trauma

    Get PDF
    Background: NOM in blunt hepatic trauma is the preferred treatment in otherwise stable patients. Aim: To evaluate the role of NOM in blunt hepatic trauma, avoiding unnecessary surgery. Methods and patients: Forty-four patients who presented with blunt hepatic trauma were admitted to the Emergency Unit. The patients were evaluated clinically. Abdominal computerized tomography was done to all hemodynamically stable patients and who were stabilized by the initial resuscitation. Staging of liver injury was done according to the scoring of the American Association for the Surgery of Trauma (AAST). Initially, all patients were treated conservatively and the patients who needed laparotomy later were considered as failure of NOM. Liver injuries due to penetrating causes were excluded. An informed consent was taken from each patient. Results: Blunt trauma was the mechanism of injury in 44 patients (60.2%) including road traffic accidents in 42.5%. The peak age was between 20 and 30 years. The male to female ratio was 10:1. The majority of patients have multiple injuries with 10% having isolated liver injury. Thirty-six patients (82%) had one or more associated extra-abdominal injuries. Surgery was indicated in 14 patients (32%). The mean admission systolic pressure was lower in the NOM failure group (90 vs. 122 mmHg with p < 0.04). Complications occurred more in the operative group, chest infection occurred in 21.4% with a p value of 0.001, hyperpyrexia occurred in 21.4% with a p value of 0.001, and wound infection in 14.2% with a p value of 0.025. Mortality occurred in 7 patients. The cause of death in patients with blunt hepatic trauma was liver related in 2 patients due to hemorrhage and DIC. Conclusion: NOM in blunt hepatic trauma is the preferred treatment in otherwise stable patients. The factors that can suspect failure of NOM were the development of hemodynamic instability or the presence of associated injury that mandates immediate exploration. KEYWORDS: Blunt liver trauma, Non operative management, Failure of non operative managemen

    Characterizing hepatitis C virus epidemiology in Egypt: systematic reviews, meta-analyses, and meta-regressions

    No full text

    Students' participation in collaborative research should be recognised

    No full text
    Letter to the editor

    Search for Higgs and ZZ Boson Decays to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma with the ATLAS Detector

    No full text
    A search for the decays of the Higgs and ZZ bosons to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma (n=1,2,3n=1,2,3) is performed with pppp collision data samples corresponding to integrated luminosities of up to 20.3fb120.3\mathrm{fb}^{-1} collected at s=8TeV\sqrt{s}=8\mathrm{TeV} with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% CL upper limits are placed on the branching fractions. In the J/ψγJ/\psi\gamma final state the limits are 1.5×1031.5\times10^{-3} and 2.6×1062.6\times10^{-6} for the Higgs and ZZ bosons, respectively, while in the Υ(1S,2S,3S)γ\Upsilon(1S,2S,3S)\,\gamma final states the limits are (1.3,1.9,1.3)×103(1.3,1.9,1.3)\times10^{-3} and (3.4,6.5,5.4)×106(3.4,6.5,5.4)\times10^{-6}, respectively

    Search for Scalar-Charm pair production in pp collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    No full text
    The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3 fb1^{-1} of pp collisions at s=8\sqrt{s}=8 TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c-quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm-neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded

    Search for Higgs and Z Boson Decays to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma with the ATLAS Detector

    No full text
    A search for the decays of the Higgs and Z bosons to J/ψγ and ϒ(nS)γ (n=1,2,3) is performed with pp collision data samples corresponding to integrated luminosities of up to 20.3 fb-1 collected at s=8 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% C.L. upper limits are placed on the branching fractions. In the J/ψγ final state the limits are 1.5×10-3 and 2.6×10-6 for the Higgs and Z boson decays, respectively, while in the ϒ(1S,2S,3S)γ final states the limits are (1.3,1.9,1.3)×10-3 and (3.4,6.5,5.4)×10-6, respectively
    corecore