56 research outputs found

    A nonstationary generalization of the Kerr congruence

    Full text link
    Making use of the Kerr theorem for shear-free null congruences and of Newman's representation for a virtual charge ``moving'' in complex space-time, we obtain an axisymmetric time-dependent generalization of the Kerr congruence, with a singular ring uniformly contracting to a point and expanding then to infinity. Electromagnetic and complex eikonal field distributions are naturally associated with the obtained congruence, with electric charge being necesssarily unit (``elementary''). We conjecture that the corresponding solution to the Einstein-Maxwell equations could describe the process of continious transition of the naked ringlike singularitiy into a rotating black hole and vice versa, under a particular current radius of the singular ring.Comment: 6 pages, twocolum
    • …
    corecore