20 research outputs found

    The seagrass rhizosphere

    Full text link
    University of Technology Sydney. Faculty of Science.Seagrass meadows are important marine ecosystems providing an array of ecosystem services to aquatic and terrestrial environments including sediment stabilisation, acting as shelter, feeding and nursery grounds for numerous marine species and even mitigating climate change through their ability to capture and store carbon in the sediment for millennia. However, owing to anthropogenic interference, seagrass meadows worldwide are shrinking, putting essential ecosystem functions at risk. Understanding the basic mechanisms that control the fitness of seagrasses is necessary in order to elucidate how human activities and changing environmental conditions is affecting the seagrass ecosystems and what can be done to better manage them. Through a series of experiments employing high-resolution measuring techniques including luminescence imaging, microsensors and novel optical sensor nanoparticles, this thesis explores the mechanisms of seagrass sediment detoxification and nutrient mobilisation, and the effect of environmental stressors on these essential processes. We show that radial Oâ‚‚ loss from the below-ground tissue leads to formation of oxic microshields that re-oxidates phytotoxic Hâ‚‚S in the rhizosphere and thus results in sediment detoxification; a vital seagrass-derived chemical defence mechanism that is adversely affected by water-column hypoxia. These seagrass-driven alterations of the rhizosphere biogeochemistry modulate the microbial community composition at the plant/sediment interface, potentially increasing the rhizospheric nitrogen availability owing to microbial-mediated nitrogen fixation. We also found that the leaf microenvironment largely controls the intra-plant Oâ‚‚ conditions and thus the below-ground tissue oxidation capacity, where sediment deposition and epiphyte overgrowth on leaves negatively affects the internal plant aeration through multiple pathways, such as (i) enhancing the thickness of the mass transfer impeding diffusive boundary layer around the leaves, (ii) reducing the light availability/quality for photosynthesis, and (iii) enhancing the over-night respiration rates in the phyllosphere. Finally, we show that seagrass-driven alterations of the rhizosphere pH microenvironment leads to development of low-pH microniches around the below-ground tissue, corresponding to the seagrass-derived oxic microzones, that results in pronounced rhizospheric phosphorus and iron mobilization for seagrasses colonizing phosphorous-limited carbonate-rich sediments. The results of this thesis brings to light the overarching importance of internal tissue aeration in seagrasses through its effect on rhizospheric biogeochemical processes and conditions, and thus underlines the need for minimizing environmental stressors leading to inadequate internal aeration, such as water-column hypoxia and sediment re-suspension, for seagrass health in changing oceans

    Radiative energy budgets of phototrophic surface-associated microbial communities and their photosynthetic efficiency under diffuse and collimated light

    Get PDF
    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O(2), temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, E(k), i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the structural organization of phytoelements are important traits affecting the photosynthetic efficiency of biofilms and sediments

    Microplastic pollution associated with reduced respiration in seagrass (Zostera marina L.) and associated epiphytes

    Get PDF
    Seagrasses provide crucial ecosystem services of relevance for the marine environment. However, anthropogenic activities are causing global seagrass decline. Increasing microplastic (MP) concentrations have been recognized as a novel threat to many marine organisms, but their effects on marine plants remain underexplored. Here, we investigate the effects of microplastic (polyethylene (PE) and polypropylene (PP)) exposure on the photosynthesis and respiration of the seagrass Zostera marina L. and its associated epiphytes. Measurements were conducted on seagrass leaves with and without epiphyte cover, as well as on epiphytes scraped off the leaf surface. Net gas exchange and pH drift measurements were used to determine rates of photosynthesis and respiration, as well as the ability of leaves and epiphytes to utilize bicarbonate. In addition, variable chlorophyll fluorescence imaging was employed to quantify the photosynthetic capacity of seagrass leaves. Our results show a limited effect of short-term (14 days) microplastic exposure on seagrass leaves and their associated epiphytes, although the photosynthetic activity and respiration rates were gradually reduced for bare seagrass leaves with increasing microplastic concentrations (25-1000 mg MP L-1). A >50% reduction in dark respiration of bare leaves was found at the highest MP exposure, while respiration rates of leaves with epiphytes and separated epiphytes were reduced by maximally ~45 and 30% upon MP exposure, respectively. Short-term microplastic exposure did not alter i) the ability to utilize bicarbonate, ii) the maximum quantum yield of PSII (FV/FM), nor iii) the light utilization efficiency of Z. marina leaves and associated epiphytes. The compensation irradiance decreased for all investigated specimens, and seagrass leaves (with and without epiphytes) were able to retain a positive net oxygen balance throughout all treatments. We speculate that the observed decrease in photosynthetic activity and respiration was caused by leachates from microplastics. Our findings thus indicate that seagrass Z. marina largely possess resilience toward microplastic pollution at its current level

    Oxygen Consumption and Sulfate Reduction in Vegetated Coastal Habitats: Effects of Physical Disturbance

    Get PDF
    Vegetated coastal habitats (VCHs), such as mangrove forests, salt marshes and seagrass meadows, have the ability to capture and store carbon in the sediment for millennia, and thus have high potential for mitigating global carbon emissions. Carbon sequestration and storage is inherently linked to the geochemical conditions created by a variety of microbial metabolisms, where physical disturbance of sediments may expose previously anoxic sediment layers to oxygen (O2), which could turn them into carbon sources instead of carbon sinks. Here, we used O2, hydrogen sulfide (H2S) and pH microsensors to determine how biogeochemical conditions, and thus aerobic and anaerobic metabolic pathways, vary across mangrove, salt marsh and seagrass sediments (case study from the Sydney area, Australia). We measured the biogeochemical conditions in the top 2.5 cm of surface (0–10 cm depth) and experimentally exposed deep sediments (>50 cm depth) to simulate undisturbed and physically exposed sediments, respectively, and how these conditions may affect carbon cycling processes. Mangrove surface sediment exhibited the highest rates of O2 consumption and sulfate (SO42-) reduction based on detailed microsensor measurements, with a diffusive O2 uptake rate of 102 mmol O2 m-2 d-1 and estimated sulfate reduction rate of 57 mmol Stot2- m-2 d-1. Surface sediments (0–10 cm) across all the VCHs generally had higher O2 consumption and estimated sulfate reduction rates than deeper layers (>50 cm depth). O2 penetration was <4 mm for most sediments and only down to ∼1 mm depth in mangrove surface sediments, which correlated with a significantly higher percent organic carbon content (%Corg) within sediments originating from mangrove forests as compared to those from seagrass and salt marsh ecosystems. Additionally, pH dropped from 8.2 at the sediment/water interface to <7–7.5 within the first 20 mm of sediment within all ecosystems. Prevailing anoxic conditions, especially in mangrove and seagrass sediments, as well as sediment acidification with depth, likely decreased microbial remineralisation rates of sedimentary carbon. However, physical disturbance of sediments and thereby exposure of deeper sediments to O2 seemed to stimulate aerobic metabolism in the exposed surface layers, likely reducing carbon stocks in VCHs

    Oxygen consumption and sulfate reduction in vegetated coastal habitats: Effects of physical disturbance

    Get PDF
    © 2019 Brodersen, Trevathan-Tackett, Nielsen, Connolly, Lovelock, Atwood and Macreadie. Vegetated coastal habitats (VCHs), such as mangrove forests, salt marshes and seagrass meadows, have the ability to capture and store carbon in the sediment for millennia, and thus have high potential for mitigating global carbon emissions. Carbon sequestration and storage is inherently linked to the geochemical conditions created by a variety of microbial metabolisms, where physical disturbance of sediments may expose previously anoxic sediment layers to oxygen (O 2 ), which could turn them into carbon sources instead of carbon sinks. Here, we used O 2 , hydrogen sulfide (H 2 S) and pH microsensors to determine how biogeochemical conditions, and thus aerobic and anaerobic metabolic pathways, vary across mangrove, salt marsh and seagrass sediments (case study from the Sydney area, Australia). We measured the biogeochemical conditions in the top 2.5 cm of surface (0-10 cm depth) and experimentally exposed deep sediments (> 50 cm depth) to simulate undisturbed and physically exposed sediments, respectively, and how these conditions may affect carbon cycling processes. Mangrove surface sediment exhibited the highest rates of O 2 consumption and sulfate (SO 42- ) reduction based on detailed microsensor measurements, with a diffusive O 2 uptake rate of 102 mmol O 2 m -2 d -1 and estimated sulfate reduction rate of 57 mmol S tot2- m -2 d -1 . Surface sediments (0-10 cm) across all the VCHs generally had higher O 2 consumption and estimated sulfate reduction rates than deeper layers (> 50 cm depth). O 2 penetration was < 4 mm for most sediments and only down to 1 mm depth in mangrove surface sediments, which correlated with a significantly higher percent organic carbon content (%C org ) within sediments originating from mangrove forests as compared to those from seagrass and salt marsh ecosystems. Additionally, pH dropped from 8.2 at the sediment/water interface to < 7-7.5 within the first 20 mm of sediment within all ecosystems. Prevailing anoxic conditions, especially in mangrove and seagrass sediments, as well as sediment acidification with depth, likely decreased microbial remineralisation rates of sedimentary carbon. However, physical disturbance of sediments and thereby exposure of deeper sediments to O 2 seemed to stimulate aerobic metabolism in the exposed surface layers, likely reducing carbon stocks in VCHs

    Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass <i>Zostera muelleri</i>

    Get PDF
    © 2017, Springer Science+Business Media B.V. Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production

    Flow and epiphyte growth effects on the thermal, optical and chemical microenvironment in the leaf phyllosphere of seagrass ( Zostera marina )

    No full text
    Intensified coastal eutrophication can result in an overgrowth of seagrass leaves by epiphytes, which is a major threat to seagrass habitats worldwide, but little is known about how epiphytic biofilms affect the seagrass phyllosphere. The physico-chemical microenvironment of Zostera marina L. leaves with and without epiphytes was mapped with electrochemical, thermocouple and scalar irradiance microsensors as a function of four irradiance conditions (dark, low, saturating and high light) and two water flow velocities (approx. 0.5 and 5 cm s-1), which resemble field conditions. The presence of epiphytes led to the build up of a diffusive boundary layer and a thermal boundary layer which impeded O2 and heat transfer between the leaf surface and the surrounding water, resulting in a maximum increase of 0.8°C relative to leaves with no epiphytes. Epiphytes also reduced the quantity and quality of light reaching the leaf, decreasing plant photosynthesis. In darkness, epiphyte respiration exacerbated hypoxic conditions, which can lead to anoxia and the production of potential phytotoxic nitric oxide in the seagrass phyllosphere. Epiphytic biofilm affects the local phyllosphere physico-chemistry both because of its metabolic activity (i.e. photosynthesis/respiration) and its physical properties (i.e. thickness, roughness, density and back-scattering properties). Leaf tissue warming can lead to thermal stress in seagrasses living close to their thermal stress threshold, and thus potentially aggravate negative effects of global warming
    corecore