3 research outputs found

    Automatic Building of a Powerful IDS for The Cloud Based on Deep Neural Network by Using a Novel Combination of Simulated Annealing Algorithm and Improved Self- Adaptive Genetic Algorithm

    Get PDF
    Cloud computing (CC) is the fastest-growing data hosting and computational technology that stands today as a satisfactory answer to the problem of data storage and computing. Thereby, most organizations are now migratingtheir services into the cloud due to its appealing features and its tangible advantages. Nevertheless, providing privacy and security to protect cloud assets and resources still a very challenging issue. To address the aboveissues, we propose a smart approach to construct automatically an efficient and effective anomaly network IDS based on Deep Neural Network, by using a novel hybrid optimization framework “ISAGASAA”. ISAGASAA framework combines our new self-adaptive heuristic search algorithm called “Improved Self-Adaptive Genetic Algorithm” (ISAGA) and Simulated Annealing Algorithm (SAA). Our approach consists of using ISAGASAA with the aim of seeking the optimal or near optimal combination of most pertinent values of the parametersincluded in building of DNN based IDS or impacting its performance, which guarantee high detection rate, high accuracy and low false alarm rate. The experimental results turn out the capability of our IDS to uncover intrusionswith high detection accuracy and low false alarm rate, and demonstrate its superiority in comparison with stateof-the-art methods

    Efficiency of two decoders based on hash techniques and syndrome calculation over a Rayleigh channel

    Get PDF
    The explosive growth of connected devices demands high quality and reliability in data transmission and storage. Error correction codes (ECCs) contribute to this in ways that are not very apparent to the end user, yet indispensable and effective at the most basic level of transmission. This paper presents an investigation of the performance and analysis of two decoders that are based on hash techniques and syndrome calculation over a Rayleigh channel. These decoders under study consist of two main features: a reduced complexity compared to other competitors and good error correction performance over an additive white gaussian noise (AWGN) channel. When applied to decode some linear block codes such as Bose, Ray-Chaudhuri, and Hocquenghem (BCH) and quadratic residue (QR) codes over a Rayleigh channel, the experiment and comparison results of these decoders have shown their efficiency in terms of guaranteed performance measured in bit error rate (BER). For example, the coding gain obtained by syndrome decoding and hash techniques (SDHT) when it is applied to decode BCH (31, 11, 11) equals 34.5 dB, i.e., a reduction rate of 75% compared to the case where the exchange is carried out without coding and decoding process

    An efficient combination between Berlekamp-Massey and Hartmann Rudolph algorithms to decode BCH codes

    Get PDF
    In digital communication and storage systems, the exchange of data is achieved using a communication channel which is not completely reliable. Therefore, detection and correction of possible errors are required by adding redundant bits to information data. Several algebraic and heuristic decoders were designed to detect and correct errors. The Hartmann Rudolph (HR) algorithm enables to decode a sequence symbol by symbol. The HR algorithm has a high complexity, that's why we suggest using it partially with the algebraic hard decision decoder Berlekamp-Massey (BM). In this work, we propose a concatenation of Partial Hartmann Rudolph (PHR) algorithm and Berlekamp-Massey decoder to decode BCH (Bose-Chaudhuri-Hocquenghem) codes. Very satisfying results are obtained. For example, we have used only 0.54% of the dual space size for the BCH code (63,39,9) while maintaining very good decoding quality. To judge our results, we compare them with other decoders
    corecore