146 research outputs found
Directed Hamiltonicity and Out-Branchings via Generalized Laplacians
We are motivated by a tantalizing open question in exact algorithms: can we
detect whether an -vertex directed graph has a Hamiltonian cycle in time
significantly less than ? We present new randomized algorithms that
improve upon several previous works:
1. We show that for any constant and prime we can count the
Hamiltonian cycles modulo in
expected time less than for a constant that depends only on and
. Such an algorithm was previously known only for the case of counting
modulo two [Bj\"orklund and Husfeldt, FOCS 2013].
2. We show that we can detect a Hamiltonian cycle in
time and polynomial space, where is the size of the maximum
independent set in . In particular, this yields an time
algorithm for bipartite directed graphs, which is faster than the
exponential-space algorithm in [Cygan et al., STOC 2013].
Our algorithms are based on the algebraic combinatorics of "incidence
assignments" that we can capture through evaluation of determinants of
Laplacian-like matrices, inspired by the Matrix--Tree Theorem for directed
graphs. In addition to the novel algorithms for directed Hamiltonicity, we use
the Matrix--Tree Theorem to derive simple algebraic algorithms for detecting
out-branchings. Specifically, we give an -time randomized algorithm
for detecting out-branchings with at least internal vertices, improving
upon the algorithms of [Zehavi, ESA 2015] and [Bj\"orklund et al., ICALP 2015].
We also present an algebraic algorithm for the directed -Leaf problem, based
on a non-standard monomial detection problem
Fast Monotone Summation over Disjoint Sets
We study the problem of computing an ensemble of multiple sums where the
summands in each sum are indexed by subsets of size of an -element
ground set. More precisely, the task is to compute, for each subset of size
of the ground set, the sum over the values of all subsets of size that are
disjoint from the subset of size . We present an arithmetic circuit that,
without subtraction, solves the problem using arithmetic
gates, all monotone; for constant , this is within the factor
of the optimal. The circuit design is based on viewing the summation as a "set
nucleation" task and using a tree-projection approach to implement the
nucleation. Applications include improved algorithms for counting heaviest
-paths in a weighted graph, computing permanents of rectangular matrices,
and dynamic feature selection in machine learning
Sharper Upper Bounds for Unbalanced Uniquely Decodable Code Pairs
Two sets form a Uniquely Decodable Code Pair
(UDCP) if every pair , yields a distinct sum , where
the addition is over . We show that every UDCP , with and , satisfies . For sufficiently small , this bound significantly
improves previous bounds by Urbanke and Li~[Information Theory Workshop '98]
and Ordentlich and Shayevitz~[2014, arXiv:1412.8415], which upper bound
by and , respectively, as approaches .Comment: 11 pages; to appear at ISIT 201
- …