46 research outputs found
Production of High-Value Proteins under Stringent Cost Constraints—The Case of Hollow Fiber Technology for Cell Culture
For decades, the benefits of utilizing hollow fiber bioreactors for continuous cell culture to produce monoclonal antibodies have been widely recognized. However, the suitability of this technology for laboratories or centers with limited resources and expertise seeking to expand their production capacity is uncertain, mainly due to unknown cost-effectiveness. In this study, a hollow fiber bioreactor with a 4.7-mL culture volume was used to culture a hybridoma clone producing immunoglobulin G antibody specific to hemoglobin F (HbF). The antibody reached a maximum concentration of 1.22 g/L and totaled 21 mg over a 44-day culture period. This preliminary production data was used to estimate the cost of consumables required for using the hollow fiber bioreactor to produce 130 mg of monoclonal antibodies, which was found to be THB35.8k (£880). The cost was slightly more expensive than batch cultivation in typical culture dishes, which ranged from THB27.8 to 30.2k (£680 to 740). Despite the advantages in terms of reduced hands-on time, shorter production duration, and highly concentrated products, the primary challenges associated with using hollow fiber bioreactors were the cost and availability of the cartridges
Association of CD99 short and long forms with MHC class I, MHC class II and tetraspanin CD81 and recruitment into immunological synapses
<p>Abstract</p> <p>Background</p> <p>CD99, a leukocyte surface glycoprotein, is broadly expressed in many cell types. On the cell surface, CD99 is expressed as two distinct isoforms, a long form and a short form. CD99 has been demonstrated to play a key role in several biological processes, including the regulation of T cell activation. However, the molecular mechanisms by which CD99 participates in such processes are unclear. As CD99 contains a short cytoplasmic tail, it is unlikely that CD99 itself takes part in its multi-functions. Association of CD99 with other membrane proteins has been suggested to be necessary for exerting its functions.</p> <p>Results</p> <p>In this study, we analyzed the association of CD99 with other cell surface molecules involved in T cell activation. We demonstrate the association of MHC class I, MHC class II and tetraspanin CD81 with CD99 molecules on the cell surface. Association of CD99 with its partners was observed for both isoforms. In addition, we determined that CD99 is a lipid raft-associated membrane protein and is recruited into the immunologic synapse during T cell activation. The implication of CD99 on T cell activation was investigated. Inhibition of anti-CD3 induced T cell proliferation by an anti-CD99 monoclonal antibody was observed.</p> <p>Conclusions</p> <p>We provide evidence that CD99 directly interact and form the complex with the MHC class I and II, and tetraspanin CD81, and is functionally linked to the formation of the immunologic synapse. Upon T cell activation, CD99 engagement can inhibit T cell proliferation. We speculate that the CD99-MHC-CD81 complex is a tetraspanin web that plays an important role in T cell activation.</p
The interaction of HAb18G/CD147 with integrin α6β1 and its implications for the invasion potential of human hepatoma cells
<p>Abstract</p> <p>Background</p> <p>HAb18G/CD147 plays pivotal roles in invasion by hepatoma cells, but the underlying mechanism remains unclear. Our previous study demonstrated that overexpression of HAb18G/CD147 promotes invasion by interacting with integrin α3β1. However, it has never been investigated whether α3β1 is solely responsible for this process or if other integrin family members also interact with HAb18G/CD147 in human hepatoma cells.</p> <p>Methods</p> <p>Human SMMC-7721 and FHCC98 cells were cultured and transfected with siRNA fragments against HAb18G/CD147. The expression levels of HAb18G/CD147 and integrin α6β1 were determined by immunofluorescent double-staining and confocal imaging analysis. Co-immunoprecipitation and Western blot analyses were performed to examine the native conformations of HAb18G/CD147 and integrin α6β1. Invasion potential was evaluated with an invasion assay and gelatin zymography.</p> <p>Results</p> <p>We found that integrin α6β1 co-localizes and interacts with HAb18G/CD147 in human hepatoma cells. The enhancing effects of HAb18G/CD147 on invasion capacity and secretion of matrix metalloproteinases (MMPs) were partially blocked by integrin α6β1 antibodies (<it>P </it>< 0.01). Wortmannin, a specific phosphatidylinositol kinase (PI3K) inhibitor that reverses the effect of HAb18G/CD147 on the regulation of intracellular Ca<sup>2+ </sup>mobilization, significantly reduced cell invasion potential and secretion of MMPs in human hepatoma cells (<it>P </it>< 0.05). Importantly, no additive effect between Wortmannin and α6β1 antibodies was observed, indicating that α6β1 and PI3K transmit the signal in an upstream-downstream relationship.</p> <p>Conclusion</p> <p>These results suggest that α6β1 interacts with HAb18G/CD147 to mediate tumor invasion and metastatic processes through the PI3K pathway.</p
CD147 monoclonal antibodies induce homotypic cell aggregation of monocytic cell line U937 via LFA-1/ICAM-1 pathway
CD147 is a 50 000–60 000 MW glycoprotein of the immunoglobulin superfamily broadly expressed on haemopoietic cell lines and peripheral blood cells. In the present study, six monoclonal antibodies (mAbs) directed against the CD147 protein were generated. The antigen defined by the generated CD147 mAbs is widely expressed on haemopoietic cell lines, peripheral blood cells and is a lymphocyte activation-associated cell surface molecule. The generated CD147 mAbs precipitated a broad protein band from U937 cells of 45 000–65 000 MW under reducing conditions. Functional analysis indicated that the CD147 mAbs markedly induced homotypic cell aggregation of U937 cells, but not K562 cells. The CD147 mAb-induced cell aggregation was inhibited by leucocyte function-antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) mAbs. However, the expression of LFA-1 and ICAM-1 molecules on U937 was not altered by CD147 mAb treatment. The U937 cell aggregation induced by CD147 mAb was also inhibited by ethylenediamine tetra-acetic acid (EDTA), sodium azide and when incubated at 4°. We therefore propose that the binding of CD147 mAb to CD147 molecule, which mimics the natural ligand binding, may generate intracellular signals that activate LFA-1/ICAM-1 intercellular adhesion pathway
Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus
Dengue virus is a major pathogen and severe infections can lead to life threatening dengue hemorrhagic fever (DHF). Dengue exists as four serotypes and DHF is often associated with secondary heterologous infections. Antibody dependent enhancement (ADE) may drive higher virus loads in these secondary infections, and is purported to result from antibodies that recognize dengue but fail to fully neutralize. We have characterized two antibodies, 2C8 and 3H5, which bind to the envelope protein. 3H5 is highly unusual as it is both potently neutralizing, but promotes little if any ADE, whereas 2C8 has strong capacity to promote ADE. We show that 3H5 shows resilient binding in endosomal pH conditions and neutralizes at low occupancy. Immune complexes of 3H5 and dengue virus do not efficiently interact with Fcγ receptors, which we propose is due to the binding mode of 3H5 and which constitutes the primary mechanism of how ADE is avoided