6 research outputs found

    A successfully thrombolysed acute inferior myocardial infarction due to type A aortic dissection with lethal consequences: the importance of early cardiac echocardiography

    Get PDF
    Thrombolysis, a standard therapy for ST elevation myocardial infarction (STEMI) in non-PCI-capable hospitals, may be catastrophic for patients with aortic dissection leading to further expansion, rupture and uncontrolled bleeding. Stanford type A aortic dissection, rarely may mimic myocardial infarction. We report a case of a patient with an inferior STEMI thrombolysed with tenecteplase and followed by clinical and electrocardiographic evidence of successful reperfusion, which was found later to be a lethal acute aortic dissection. Prognostic implications of early diagnosis applying transthoracic echocardiography (TTE) are described

    Short-term effects of manual therapy plus capacitive and resistive electric transfer therapy in individuals with chronic non-specific low back pain : a randomized clinical trial study

    Get PDF
    Background and Objectives: Chronic non-specific low back pain (CNSLBP) is defined as back pain that lasts longer than 12 weeks. Capacitive and resistive electric transfer (TECAR) therapy utilizes radiant energy to generate endogenous heat and is widely used for the treatment of chronic musculoskeletal pain. The aim of this study was to investigate the efficacy of manual therapy (MT) program combined with TECAR therapy in individuals with CNSLBP. Materials and Methods: Sixty adults with CNSLBP were randomly divided equally into three groups. The first group followed an MT protocol in the lumbar region (MT group), the second group followed the same MT protocol combined with TECAR therapy (MT + TECAR group) using a conventional capacitive electrode as well as a special resistive electrode bracelet, and the third group (control group) received no treatment. Both intervention programs included six treatments over two weeks. Pain in the last 24 h with the Numeric Pain Rating Scale (NPRS), functional ability with the Roland–Morris Disability Questionnaire (RMDQ), pressure pain threshold (PPT) in the lumbar region with pressure algometry, and mobility of the lumbo-pelvic region through fingertip-to-floor distance (FFD) test were evaluated before and after the intervention period with a one-month follow-up. Analysis of variance with repeated measures was applied. Results: In the NPRS score, both intervention groups showed statistically significant differences compared to the control group both during the second week and the one-month follow-up (p 0.05). Conclusions: The application of an MT protocol with TECAR therapy appeared more effective than conventional MT as well as compared to the control group in reducing pain and disability and improving PPT in individuals with CNSLBP. No further improvement was noted in the mobility of the lumbo-pelvic region by adding TECAR to the MT intervention

    Hemodynamic Responses to a Handgrip Exercise Session, with and without Blood Flow Restriction, in Healthy Volunteers

    No full text
    Exercising at submaximal intensity with a hand dynamometer causes mild hemodynamic adaptations that can improve cardiovascular function. However, hemodynamic responses and fatigue have not been adequately studied in an isometric exercise protocol combined with blood flow restriction (BFR). Our study aimed to examine and compare acute hemodynamic responses and muscle fatigue after an isometric exercise session using a handgrip dynamometer, with and without BFR. Twelve volunteers performed the exercise protocol, with and without BFR, at random, with the BFR pressure set at 140 mmHg. Arterial blood pressure (BP), heart rate (HR), oxygen saturation (SpO2), and muscle fatigue were measured before, during, and 15 min after the completion of the exercise session. Without BFR, we noticed a slight, albeit statistically insignificant, HR increase. The variations found in systolic and diastolic pressure were small and statistically insignificant. Furthermore, blood oxygen saturation (SpO2) did not change significantly. Significantly higher levels of fatigue were found in exercise with BFR, compared to without BFR, at the end of each set of isometric contractions. In conclusion, a handgrip exercise session with mild BFR does not alter the acute hemodynamic responses to exercise in healthy volunteers. However, it results in higher muscle fatigue compared to that experienced after exercise without BFR

    NeuroSuitUp: System Architecture and Validation of a Motor Rehabilitation Wearable Robotics and Serious Game Platform

    Get PDF
    Background: This article presents the system architecture and validation of the NeuroSuitUp body–machine interface (BMI). The platform consists of wearable robotics jacket and gloves in combination with a serious game application for self-paced neurorehabilitation in spinal cord injury and chronic stroke. Methods: The wearable robotics implement a sensor layer, to approximate kinematic chain segment orientation, and an actuation layer. Sensors consist of commercial magnetic, angular rate and gravity (MARG), surface electromyography (sEMG), and flex sensors, while actuation is achieved through electrical muscle stimulation (EMS) and pneumatic actuators. On-board electronics connect to a Robot Operating System environment-based parser/controller and to a Unity-based live avatar representation game. BMI subsystems validation was performed using exercises through a Stereoscopic camera Computer Vision approach for the jacket and through multiple grip activities for the glove. Ten healthy subjects participated in system validation trials, performing three arm and three hand exercises (each 10 motor task trials) and completing user experience questionnaires. Results: Acceptable correlation was observed in 23/30 arm exercises performed with the jacket. No significant differences in glove sensor data during actuation state were observed. No difficulty to use, discomfort, or negative robotics perception were reported. Conclusions: Subsequent design improvements will implement additional absolute orientation sensors, MARG/EMG based biofeedback to the game, improved immersion through Augmented Reality and improvements towards system robustness

    Neurorehabilitation Through Synergistic Man-Machine Interfaces Promoting Dormant Neuroplasticity in Spinal Cord Injury: Protocol for a Nonrandomized Controlled Trial

    Get PDF
    Background: Spinal cord injury (SCI) constitutes a major sociomedical problem, impacting approximately 0.32-0.64 million people each year worldwide; particularly, it impacts young individuals, causing long-term, often irreversible disability. While effective rehabilitation of patients with SCI remains a significant challenge, novel neural engineering technologies have emerged to target and promote dormant neuroplasticity in the central nervous system. Objective: This study aims to develop, pilot test, and optimize a platform based on multiple immersive man-machine interfaces offering rich feedback, including (1) visual motor imagery training under high-density electroencephalographic recording, (2) mountable robotic arms controlled with a wireless brain-computer interface (BCI), (3) a body-machine interface (BMI) consisting of wearable robotics jacket and gloves in combination with a serious game (SG) application, and (4) an augmented reality module. The platform will be used to validate a self-paced neurorehabilitation intervention and to study cortical activity in chronic complete and incomplete SCI at the cervical spine. Methods: A 3-phase pilot study (clinical trial) was designed to evaluate the NeuroSuitUp platform, including patients with chronic cervical SCI with complete and incomplete injury aged over 14 years and age-/sex-matched healthy participants. Outcome measures include BCI control and performance in the BMI-SG module, as well as improvement of functional independence, while also monitoring neuropsychological parameters such as kinesthetic imagery, motivation, self-esteem, depression and anxiety, mental effort, discomfort, and perception of robotics. Participant enrollment into the main clinical trial is estimated to begin in January 2023 and end by December 2023. Results: A preliminary analysis of collected data during pilot testing of BMI-SG by healthy participants showed that the platform was easy to use, caused no discomfort, and the robotics were perceived positively by the participants. Analysis of results from the main clinical trial will begin as recruitment progresses and findings from the complete analysis of results are expected in early 2024. Conclusions: Chronic SCI is characterized by irreversible disability impacting functional independence. NeuroSuitUp could provide a valuable complementary platform for training in immersive rehabilitation methods to promote dormant neural plasticity
    corecore