30 research outputs found
Comparison of the effect of a CIDR-Select Synch versus a long-term CIDR based AI protocol on reproductive performance in multiparous dairy cows in Swiss dairy farms
<p>Abstract</p> <p>Background</p> <p>Synchronization programs have become standard in the dairy industry in many countries. In Switzerland, these programs are not routinely used for groups of cows, but predominantly as a therapy for individual problem cows. The objective of this study was to compare the effect of a CIDR-Select Synch and a 12-d CIDR protocol on the pregnancy rate in healthy, multiparous dairy cows in Swiss dairy farms.</p> <p>Methods</p> <p>Cows (N = 508) were randomly assigned to CIDR-Select Synch (N = 262) or 12-d CIDR (N = 246) protocols. Cows in the CIDR-Select Synch group received a CIDR and 2.5 ml of buserelin i.m. on d 0. On d 7, the CIDR insert was removed and 5 ml of dinoprost was administered i.m.. Cows in the 12-d CIDR group received the CIDR on d 0 and it was removed on d 12 (the routine CIDR protocol in Swiss dairies). On d 0 a milk sample for progesterone analysis was taken. Cows were inseminated upon observed estrus. Pregnancy was determined at or more than 35 days after artificial insemination. As a first step, the two groups were compared as to indication for treatment, breed, stud book, stall, pasture, and farmer's business using chi square tests or Fisher's exact test. Furthermore, groups were compared as to age, DIM, number of AI's, number of cows per farm, and yearly milk yield per cow using nonparametric ANOVA. A multiple logistic model was used to relate the success of the protocols to all of the available factors; in particular treatment (CIDR-Select Synch/12-d CIDR), milk progesterone value, age, DIM, previous treatment of the uterus, previous gynecological treatment, and number of preceding inseminations.</p> <p>Results</p> <p>The pregnancy rate was higher in cows following the CIDR-Select Synch compared to the 12-d CIDR protocol (50.4% vs. 22.4%; P < 0.0001).</p> <p>Conclusion</p> <p>The CIDR-Select Synch protocol may be highly recommended for multiparous dairy cows. The reduced time span of the progesterone insert decreased the number of days open, improved the pregnancy rate compared to the 12-d CIDR protocol and the cows did not to have to be handled more often.</p
Associations among serum pro- and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows
BACKGROUND: Adipose tissue is an active endocrine organ which secretes a wide range of hormones and protein factors, collectively termed adipokines. Adipokines affect appetite and satiety, glucose and lipid metabolism, inflammation and immune functions. The objectives were to evaluate serum concentrations of adipokines (adiponectin, leptin, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6) in lactating dairy cows with postpartum uterine inflammatory conditions (metritis, clinical endometritis or subclinical endometritis) and in cows experiencing loss of body condition, and to assess the relationship of adipokines and body condition loss in the establishment of persistent uterine inflammatory conditions. METHODS: Lactating multiparous Holstein cows (Nā=ā40), with body condition scores (BCS) from 2 to 4 (eight cows for each 0.5 score increment) were enrolled. Body condition was monitored for all cows weekly for 7 weeks post calving; cows with uterine inflammatory conditions were also re-evaluated 2 weeks later. Blood samples were collected from 1 week prior to calving to 7 weeks after calving for determination of serum concentrations of adipokines, insulin and insulin like growth factor (IGF)-1. RESULTS: Cows with metritis or clinical endometritis had higher serum concentrations of adiponectin, leptin, TNF-alpha, IL-1beta and IL-6 compared to normal cows (P < 0.05). Furthermore, serum leptin, TNF-alpha, IL-1beta and IL-6 were higher in cows with subclinical endometritis compared to normal cows (P < 0.05), and insulin and IGF-1 concentrations were lower in cows with metritis or clinical endometritis. Cows with low BCS (2 and 2.5) had significantly higher adiponectin, TNF-alpha, IL-1beta and IL-6 than those with high BCS (3 to 4). Cows with persistent uterine inflammatory conditions had higher adiponectin, leptin TNF-alpha, IL-1beta and IL-6 and insulin compared to normal and spontaneously recovered cows, except for IGF-1 (P < 0.05). CONCLUSIONS: Serum concentrations of adipokines, insulin, and IGF-1 had significant associations with BCS categories (low vs. high) and postpartum uterine inflammatory conditions. Perhaps loss of body condition mediated increases in anti- and pro-inflammatory cytokines, whereas increased pro- and anti-inflammatory cytokines concentrations mediated body condition loss and thereby prolonged persistence of uterine inflammation in dairy cows
MicroRNAs in the Pathogenesis of PreeclampsiaāA Case-Control In Silico Analysis
Preeclampsia (PE) occurs in 5% to 7% of all pregnancies, and the PE that results from abnormal placentation acts as a primary cause of maternal and neonatal morbidity and mortality. The objective of this secondary analysis was to elucidate the pathogenesis of PE by probing proteināprotein interactions from in silico analysis of transcriptomes between PE and normal placenta from Gene Expression Omnibus (GSE149812). The pathogenesis of PE is apparently determined by associations of miRNA molecules and their target genes and the degree of changes in their expressions with irregularities in the functions of hemostasis, vascular systems, and inflammatory processes at the fetalāmaternal interface. These irregularities ultimately lead to impaired placental growth and hypoxic injuries, generally manifesting as placental insufficiency. These differentially expressed miRNAs or genes in placental tissue and/or in blood can serve as novel diagnostic and therapeutic biomarkers
MicroRNAs and Their Associated Genes Regulating the Acrosome Reaction in Sperm of High- versus Low-Fertility Holstein Bulls
Bioinformatics envisage experimental data as illustrated biological networks, exploring roles of individual proteins and their interactions with other proteins in regulation of biological functions. The objective was to identify differentially expressed miRNAs and their associated genes regulating the acrosome reaction in capacitated sperm of high- compared to low-fertility dairy bulls and to elucidate biological functional pathways using a systems biology approach, featuring miRNAāmRNA cluster analysis. Categorized bovine-specific miRNAs (n = 84) were analyzed by RT-PCR; 19 were differentially expressed in high- compared to low-fertility sperm (p ā¤ 0.05, fold regulation ā„ 2 magnitudes). Six miRNAs (bta-miR-129-5p, bta-miR-193a-3p, bta-miR-217, bta-mir-296-5p, bta-miR-27a, and bta-miR-320a) were highly upregulated (p p < 0.05) in high- compared to low-fertility capacitated bull sperm. In conclusion, differentially expressed miRNAs in high-fertility bovine sperm regulating acrosome functions have potential for predicting bull fertility
In Silico Analysis of miRNA-Mediated Genes in the Regulation of Dog Testes Development from Immature to Adult Form
High-throughput in-silico techniques help us understand the role of individual proteins, proteināprotein interaction, and their biological functions by corroborating experimental data as epitomized biological networks. The objective of this investigation was to elucidate the association of miRNA-mediated genes in the regulation of dog testes development from immature to adult form by in-silico analysis. Differentially expressed (DE) canine testis miRNAs between healthy immature (2.2 Ā± 0.13 months; n = 4) and mature (11 Ā± 1.0 months; n = 4) dogs were utilized in this investigation. In silico analysis was performed using miRNet, STRING, and ClueGo programs. The determination of mRNA and protein expressions of predicted pivotal genes and their association with miRNA were studied. The results showed proteināprotein interaction for the upregulated miRNAs, which revealed 978 enriched biological processes GO terms and 127 KEGG enrichment pathways, and for the down-regulated miRNAs revealed 405 significantly enriched biological processes GO terms and 72 significant KEGG enrichment pathways (False Recovery Rate, p < 0.05). The in-silico analysis of DE-miRNAās associated genes revealed their involvement in the governing of several key biological functions (cell cycle, cell proliferation, growth, maturation, survival, and apoptosis) in the testis as they evolve from immature to adult forms, mediated by several key signaling pathways (ErbB, p53, PI3K-Akt, VEGF and JAK-STAT), cytokines and hormones (estrogen, GnRH, relaxin, thyroid hormone, and prolactin). Elucidation of DE-miRNA predicted genesā specific roles, signal transduction pathways, and mechanisms, by mimics and inhibitors, which could perhaps offer diagnostic and therapeutic targets for infertility, cancer, and birth control
Sertoli, Leydig, and Spermatogonial Cellsā Specific Gene and Protein Expressions as Dog Testes Evolve from Immature into Mature States
Sertoli, Leydig, and spermatogonial cells proliferate and differentiate from birth to puberty and then stay stable in adulthood. We hypothesized that expressions of spermatogenesis-associated genes are not enhanced with a mere increase of these cellsā numbers. To accept this postulation, we investigated the abundances of Sertoli cell-specific FSHR and AMH, Leydig cell-specific LHR and INSL3, and spermatogonia-specific THY1 and CDH1 markers in immature and mature canine testis. Four biological replicates of immature and mature testes were processed, and RT-PCR was performed to elucidate the cellsā specific markers. The data were analyzed by ANOVA, using the 2āāāCt method to ascertain differences in mRNA expressions. In addition, Western blot and IHC were performed. Gene expressions of all the studied cellsā specific markers were down-regulated (p p < 0.05). Despite the obvious expansion of these cellsā numbers from immature to adult testis, the cellsā specific markers were not enriched in mature testis compared with immature dog testis. The results support the postulation that the gene expressions do not directly correlate with the increase of the cell numbers during post-natal development but changes in gene expressions show functional significance
Investigation of Sperm and Seminal Plasma Candidate MicroRNAs of Bulls with Differing Fertility and In Silico Prediction of miRNA-mRNA Interaction Network of Reproductive Function
Recent advances in high-throughput in silico techniques portray experimental data as exemplified biological networks and help us understand the role of individual proteins, interactions, and their biological functions. The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize the target genes based on biological process predictions. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥ 5 magnitudes). The expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further, analysis of the categorized genes showed association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies
mRNA Expressions of Candidate Genes in Gestational Day 16 Conceptus and Corresponding Endometrium in Repeat Breeder Dairy Cows with Suboptimal Uterine Environment Following Transfer of Different Quality Day 7 Embryos
Effect of the gestational day (GD) 7 embryo quality grade (QG) and subclinical endometritis (SCE) on mRNA and protein expressions of candidate genes [Interferon-Ļ (IFNT), IFN stimulated genes (ISG15, CTSL1, RSAD2, SLC2A1, CXCL10, and SLC27A6), Peroxisome proliferator activated receptors (PPARA, D, and G), Retinoid X receptors (RXRA, B, and G), and Mucin-1 (MUC1)] in GD16 conceptus and corresponding endometrium were evaluated. After screening of performance records (n = 2389) and selection of repeat breeders (n = 681), cows with SCE (ā„6% polymorphonuclear neutrophilsāPMN; n = 180) and no-SCE (<6%PMN; n = 180) received GD7 embryos of different QGs. Based on GD16 conceptus recovery, cows with SCE (n = 30) and No- SCE (n = 30) that received GD7 embryos QG1 (good, n = 20), 2 (fair, n = 20), and 3 (poor, n = 20) were included for gene analysis. mRNA and protein expressions (IFNT, ISG15, CXCL10, PPARG, RXRG, SLC2A1, and SLC27A6) differed between SCE and embryo QG groups. All genes but MUC1 and all proteins but MUC1 expression was greater in filamentous conceptus and corresponding endometrium vs. tubular conceptus and matching endometrium in SCE and embryo QG groups. In conclusion, disrupted embryo-uterine communication by altered expression of candidate genes in SCE cows, and in cows following the transfer of poor embryo negatively programs the conceptus development and plausibly affects conceptus survival
Subclinical pregnancy toxemia induced gene expression changes in ovine placenta and uterus
The objective was to elucidate gene expression differences in uterus, caruncle and cotyledon of ewes with subclinical pregnancy toxemia (SCPT) and healthy ewes, and to identify associated biological functions and pathways involved in pregnancy toxemia. On Day 136 (Ā±1 day) post breeding ewes (n=18) had body condition score (BCS; 1 to 5; 1, emaciated; 5, obese) assessed and blood samples were collected for plasma glucose and Ī²-hydroxybutyrate (BHBA) analyses. The ewes were euthanized and tissue samples were collected from the gravid uterus and placentomes. Based on BCS (2.0 Ā± 0.02), glucose (2.4 Ā± 0.33) and BHBA (0.97 Ā± 0.06) concentrations, ewes (n=10) were grouped as healthy (n=5) and subclinical SCPT (n=5) ewes. The mRNA expressions were determined by quantitative PCR method and prediction of miRNA partners and target genes for the predicted miRNA were identified using miRDB (http://mirdb.org/miRDB/). Top ranked target genes were used to identify associated biological functions and pathways in response to subclinical pregnancy toxemia using PANTHER. The angiogenesis genes VEGF and PlGF, and AdipoQ, AdipoR2, PPARG, LEP, IGF1, IGF2, IL1b and TNFĪ± mRNA expressions were lower in abundances; whereas hypoxia genes eNOS, HIF1a, and HIF 2a, and sFlt1 and KDR mRNA expressions were greater in abundances in uterus and placenta of SCPT ewes compared to healthy ewes (P<0.05). The predicted miRNA and associated target genes contributed to several biological processes, including apoptosis, biological adhesion, biological regulation, cellular component biogenesis, cellular process, developmental process, immune system process, localization, metabolic process, multicellular organismal process, reproduction, and response to stimulus. The target genes were involved in several pathways including angiogenesis, cytoskeletal regulation, hypoxia response via HIF activation, interleukin signaling, ubiquitin proteasome and VEGF signaling pathway. In conclusion, genes associated with blood vessel remodeling were lower in abundances, and that the genes associated with hypoxic conditions were greater in abundances in the utero-placental compartment of SCPT ewes. It is obvious that the factors that influence placental vascular development and angiogenesis as noted in this study set the course for hemodynamic changes and hence have a major impact on the rate of transplacental nutrient exchange, fetal growth and health of the dam
Dysregulated microRNA clusters in response to retinoic acid and CYP26B1 inhibitor induced testicular function in dogs
Spermatogenesis is a multistep synchronized process. Diploid spermatogonia differentiate into haploid spermatozoa following mitosis, meiosis and spermiogenesis. Division and differentiation of male germ cells is achieved through the sequential expression of several genes. Numerous mRNAs in the differentiating germ cells undergo post-transcriptional and translational regulation. MiRNAs are powerful negative regulators of mRNA transcription, stability, and translation and recognize their mRNA targets through base-pairing. Retinoic acid (RA) signaling is essential for spermatogenesis and testicular function. Testicular RA level is critical for RA signal transduction. This study investigated the miRNAs modulation in an RA- induced testicular environment following the administration of all-trans RA (2 ĀµM) and CYP26B1- inhibitor (1 ĀµM) compared to control. Eighty four canine mature miRNAs were analyzed and their expression signatures were distinguished using real-time PCR based array technology. Of the miRNAs analyzed, miRNA families such as miR-200 (cfa-miR-200a, cfa-miR-200b and cfa-miR-200c), Mirlet-7 (cfa-let-7a, cfa-let-7b, cfa-let-7c, cfa-let-7g and cfa-let-7f), miR-125 (cfa-miR-125a and cfa-miR-125b), miR-146 (cfa-miR-146a and cfa-miR-146b), miR-34 (cfa-miR-34a, cfa-miR-34b and cfa-miR-34c), miR-23 (cfa-miR-23a and cfa-miR-23b), cfa-miR-184, cfa-miR-214 and cfa-miR-141 were significantly up-regulated with testicular RA intervention via administration of CYP26B1 inhibitor and all-trans-RA and species of miRNA such as cfa-miR-19a, cfa-miR-29b, cfa-miR-29c, cfa-miR-101 and cfa-miR-137 were significantly down-regulated. This study explored information regarding chromosome distribution, human orthologous sequences and the interaction of target genes of miRNA families significantly distinguished in this study using prediction algorithms. This study importantly identified dysregulated miRNA species resulting from RA-induced spermatogenesis. The present contribution serves as a useful resource for further elucidation of the regulatory role of individual miRNA in RA synchronized canine spermatogenesis