12 research outputs found

    Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts

    No full text
    A promising method to reduce global warming has been methane reforming with CO2, as it combines two greenhouse gases to obtain useful products. In this study, Ni-supported catalysts were synthesized using the wet impregnation method to obtain 5%Ni/Al2O3(SA-5239), 5%Ni/Al2O3(SA-6175), 5%Ni/SiO2, 5%Ni/MCM41, and 5%Ni/SBA15. The catalysts were tested in dry reforming of methane at 700 °C, 1 atm, and a space velocity of 39,000 mL/gcat h, to study the interaction of Ni with the supports, and evaluation was based on CH4 and CO2 conversions. 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 gave the highest conversion of CH4 (78 and 75%, respectively) and CO2 (84 and 82%, respectively). The catalysts were characterized by some techniques. Ni phases were identified by X-ray diffraction patterns. Brunauer–Emmett–Teller analysis showed different surface areas of the catalysts with the least being 4 m2/g and the highest 668 m2/g belonging to 5%Ni/Al2O3(SA-5239) and 5%Ni/SBA15, respectively. The reduction profiles revealed weak NiO-supports interaction for 5%Ni/Al2O3(SA-5239), 5%Ni/MCM41, and 5%Ni/SBA15; while strong interaction was observed in 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2. The 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 were close with respect to performance; however, the former had a higher amount of carbon deposit, which is mostly graphitic, according to the conducted thermal analysis. Carbon deposits on 5%Ni/SiO2 were mainly atomic in nature

    Effect of Pressure on Na0.5La0.5Ni0.3Al0.7O2.5 Perovskite Catalyst for Dry Reforming of CH4

    No full text
    In this paper, a comprehensive study was carried out on the application of perovskite catalyst in dry reforming of CH4. The perovskite catalyst was prepared using a sol–gel method. The prepared samples were characterized by N2 adsorption/desorption, TPR, XRD, CO2-TPD, TGA, TPO, Raman, and SEM techniques. In addition, the effect of operating pressure, namely, 1 bar, 3 bar, 5 bar, and 7 bar, temperature (500–800 °C) was evaluated. The characterization results indicated that catalysts operated at 1 bar, gas hourly space velocity of 84000 (mL/g/h) gave the best catalytic performance. CH4 and CO2 conversions of 77 and 80% were obtained at 1 bar and at 700 °C reaction temperature. The increase of reaction temperatures from 500 °C to 800 °C increased the reaction rate and hence the methane and carbon dioxide conversions were increased. A unity ratio of H2/CO was obtained at 1 bar for temperatures 600 °C and above. Similarly, the time on stream tests, obtained at a 700 °C reaction temperature, showed that the best ratio in terms of the closeness of unity and the stable profile could be attained when the pressure was set to 1 bar. The TGA analysis showed the drop of mass due to oxidation of carbon deposits, which started at 500 °C. The catalyst operated at 1 bar produced the least amount of carbon, equivalent to 35% weight loss, while the 3 and 5 bar operated catalysts generated carbon formation, equivalent to 65% weight loss. However, the 7 bar operated catalyst resulted the highest accumulation of carbon formation, equivalent to 83% weight reduction. Hence, the TGA profile indicated the relative carbon deposition on the catalyst, which was dependent of the operated pressure and hence confirmed the suitability operation pressure of 1 bar. The characterizations of the Raman, EDX, TGA, and TPO all presented the formation of carbon

    Combined Magnesia, Ceria and Nickel catalyst supported over γ-Alumina Doped with Titania for Dry Reforming of Methane

    No full text
    This study investigated dry reforming of methane (DRM) over combined catalysts supported on γ-Al2O3 support doped with 3.0 wt. % TiO2. Physicochemical properties of all catalysts were determined by inductively coupled plasma/mass spectrometry (ICP-MS), nitrogen physisorption, X-ray diffraction, temperature programmed reduction/oxidation/desorption/pulse hydrogen chemisorption, thermogravimetric analysis, and scanning electron microscopy. Addition of CeO2 and MgO to Ni strengthened the interaction between the Ni and the support. The catalytic activity results indicate that the addition of CeO2 and MgO to Ni did not reduce carbon deposition, but improved the activity of the catalysts. Temperature programmed oxidation (TPO) revealed the formation of carbon that is mainly amorphous and small amount of graphite. The highest CH4 and CO2 conversion was found for the catalyst composed of 5.0 wt. % NiO-10.0 wt. % CeO2/3.0 wt. %TiO2-γ-Al2O3 (Ti-CAT-II), resulting in H2/CO mole ratio close to unity. The optimum reaction conditions in terms of reactant conversion and H2/CO mole ratio were achieved by varying space velocity and CO2/CH4 mole ratio

    Catalytic Behaviour of Ce-Doped Ni Systems Supported on Stabilized Zirconia under Dry Reforming Conditions

    Get PDF
    Ni supported on bare and modified ZrO2 samples were synthesized using the incipient wet impregnation method. The t-ZrO2 phase was stabilized by incorporation of La2O3 into ZrO2. Moreover, the influence of CeO2-doping on the physico-chemical and catalytic properties under CO2 reforming conditions was probed. The characterization data of the investigated catalysts were obtained by using XRD, CO2/H2-TPD, BET, TPR, TPO, TGA, XPS and TEM characterization techniques. In the pristine Ni/Zr catalyst, the t-ZrO2 phase transformed into the monoclinic phase. However, upon support modification by La2O3, significant effects on the physicochemical properties were observed due to the monoclinic-to-tetragonal ZrO2 phase transformation also affecting the catalytic activity. As a result, superior activity on the La2O3 modified Ni/Zr catalyst was achieved, while no relevant change in the surface properties and activity of the catalysts was detected after doping by CeO2. The peculiar behavior of the Ni/La-ZrO2 sample was related to higher dispersion of the active phase, with a more pronounced stabilization of the t-ZrO2 phase

    Optimizing MgO Content for Boosting g-Al 2 O 3 -Supported Ni Catalyst in Dry Reforming of Methane

    No full text
    The dry reforming of methane (DRM) process has attracted research interest because of its ability to mitigate the detrimental impacts of greenhouse gases such as methane (CH4) and carbon dioxide (CO2) and produce alcohols and clean fuel. In view of this importance of DRM, we disclosed the efficiency of a new nickel-based catalyst, which was promoted with magnesia (MgO) and supported over gamma-alumina (γ-Al2O3) doped with silica (SiO2), toward DRM. The synthesized catalysts were characterized by H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric analysis (TGA), and Transmission electron microscopy (TEM) techniques. The effect of MgO weight percent loading (0.0, 1.0, 2.0, and 3.0 wt. %) was examined because the catalytic performance was found to be a function of this parameter. An optimum loading of 2.0 wt. % of MgO was obtained, where the conversion of CH4 and CO2 at 800 °C were 86% and 91%, respectively, while the syngas (H2/CO) ratios relied on temperature and were in the range of 0.85 to 0.95. The TGA measurement of the best catalyst, which was operated over a 15-h reaction time, displayed negligible weight loss (<9.0 wt. %) due to carbon deposition, indicating the good resistance of our catalyst system to the deposition of carbon owing to the dopant and the modifier. TEM images showed the presence of multiwalled carbon nanotubes, confirming the TGA

    Nanosized Ni/SBA-15 Catalysts for CO<sub>2</sub> Reforming of CH<sub>4</sub>

    No full text
    Ni, Co, and Co&#8722;Ni bimetallic catalysts supported over SBA-15 and over SBA-15 doped with Zn or Ce oxides were prepared and tested in a methane dry reforming reaction. The loading of the metals in the catalyst was 5 wt % for either mono or bimetallic catalysts. The prepared catalysts were tested in a continuous-flow fixed-bed reactor at 800 &#176;C under atmospheric pressure. XRD, TPR, TPD, and SEM characterization techniques were employed to investigate the catalytic properties of fresh catalysts. SEM and TGA were used to study the catalytic properties of spent catalysts. A remarkable effect on the reduction properties and catalytic performance of catalysts was observed after adding Zn and Ce. Over an 8 h test, Ni/SBA-15 showed the best activity and stability. The conversion was 90% for CH4 and CO2. Co&#8722;Ni/SBA-15 and Co&#8722;Ni/Ce&#8722;SBA-15 have shown a reasonable activity and stability. Selectivity of the Ni/SBA-15 catalyst was higher than all other catalysts as indicated by the H2/CO ratio. Co/SBA-15 and Co&#8722;Ni/Zn&#8722;SBA-15 showed a low activity and selectivity. TPD&#8722;NH3 profiles indicated that doping SBA-15 with Ce and/or Zn increased the catalyst acidic sites. Ni/SBA-15 is an excellent potential catalyst for commercial methane dry reforming processes
    corecore