3 research outputs found

    Improvement of problematic soil using crumb rubber tyre

    No full text
    Construction on problematic soil that has low bearing capacity, low shear strength, high compressibility, and high water-content will interfere with the smooth construction process and will affect time and cost due to repetitive maintenance. Pavement built on problematic soil as its subgrade is exposed to pavement failures, such as fatigue cracking, longitudinal cracking, and pumping, owing to swelling or shrinkage due to moisture variation and differential settlement. Therefore, improvement of the ground needs to commence so as to improve its load bearing capacity, in order to sustain the load on top of it. Consequently, the main aim of this study is to determine the effectiveness of crumb tyre rubber mixed with soil samples as one of the soil stabilisation techniques and to establish the optimum usage percentage of crumb tyre rubber as a stabiliser. Clayey sand soil was mixed with 5%, 10% and 15% of crumb tyre rubber by weight of the soil sample and was tested for physical properties, such as particle size distribution and plasticity index. In obtaining the changes in strength, mixed clayey sand-crumb tyre rubber samples were subjected to compaction and California Bearing Ratio (CBR) tests. The results showed that the increment of crumb tyre rubber percentage as an additive, increased the CBR value and therefore enhanced the strength of the modified soil. However, the crumb tyre rubber stabiliser affected the optimum moisture content and maximum dry density of the modified samples by decreasing their values. The optimum percentage of crumb tyre rubber mixture was found to be 10% by weight at the end of this study. These findings indicate that the measured crumb tyre rubber is suitable for supporting the clayey sand soil for the subgrade of pavement construction

    Case Series of Genetically Confirmed Index Cases of Familial Hypercholesterolemia in Primary Care

    Get PDF
    BACKGROUND: In Malaysia, the prevalence of genetically confirmed heterozygous familial hypercholesterolemia (FH) was reported as 1 in 427. Despite this, FH remains largely underdiagnosed and undertreated in primary care.CASE REPORT: In this case series, we report 3 FH cases detected in primary care due to mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein-B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. The mutations in case 1 (frameshift c.660del pathogenic variant in LDLR gene) and case 2 (missense c.10579C>T pathogenic variant in APOB gene) were confirmed as pathogenic, while the mutation in case 3 (missense c.277C>T mutation in PCSK9 gene) may have been benign. In case 1, the patient had the highest LDL-c level, 8.6 mmol/L, and prominent tendon xanthomas. In case 2, the patient had an LDL-c level of 5.7 mmol/L and premature corneal arcus. In case 3, the patient had an LDL-c level of 5.4 mmol/L but had neither of the classical physical findings. Genetic counseling and diagnosis were delivered by primary care physicians. These index cases were initially managed in primary care with statins and therapeutic lifestyle modifications. They were referred to the lipid specialists for up-titration of lipid lowering medications. First-degree relatives were identified and referred for cascade testing.CONCLUSIONS: This case series highlights different phenotypical expressions in patients with 3 different FH genetic mutations. Primary care physicians should play a pivotal role in the detection of FH index cases, genetic testing, management, and cascade screening of family members, in partnership with lipid specialists

    Reducing Premature Coronary Artery Disease in Malaysia by Early Identification of Familial Hypercholesterolemia Using the Familial Hypercholesterolemia Case Ascertainment Tool (FAMCAT): Protocol for a Mixed Methods Evaluation Study

    No full text
    Background:Familial hypercholesterolemia (FH) is predominantly caused by mutations in the 4 FH candidate genes (FHCGs), namely, low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB-100), proprotein convertase subtilisin/kexin type 9 (PCSK9), and the LDL receptor adaptor protein 1 (LDLRAP1). It is characterized by elevated low-density lipoprotein cholesterol (LDL-c) levels leading to premature coronary artery disease. FH can be clinically diagnosed using established clinical criteria, namely, Simon Broome (SB) and Dutch Lipid Clinic Criteria (DLCC), and can be identified using the Familial Hypercholesterolemia Case Ascertainment Tool (FAMCAT), a primary care screening tool.Objective:This study aims to (1) compare the detection rate of genetically confirmed FH and diagnostic accuracy between the FAMCAT, SB, and DLCC in the Malaysian primary care setting; (2) identify the genetic mutation profiles, including novel variants, in individuals with suspected FH in primary care; (3) explore the experience, concern, and expectation of individuals with suspected FH who have undergone genetic testing in primary care; and (4) evaluate the clinical utility of a web-based FH Identification Tool that includes the FAMCAT, SB, and DLCC in the Malaysian primary care setting.Methods:This is a mixed methods evaluation study conducted in 11 Ministry of Health primary care clinics located at the central administrative region of Malaysia. In Work stream 1, the diagnostic accuracy study design is used to compare the detection rate and diagnostic accuracy of the FAMCAT, SB, and DLCC against molecular diagnosis as the gold standard. In Work stream 2, the targeted next-generation sequencing of the 4 FHCGs is used to identify the genetic mutation profiles among individuals with suspected FH. In Work stream 3a, a qualitative semistructured interview methodology is used to explore the experience, concern, and expectation of individuals with suspected FH who have undergone genetic testing. Lastly, in Work stream 3b, a qualitative real-time observation of primary care physicians using the “think-aloud” methodology is applied to evaluate the clinical utility of a web-based FH Identification Tool.Results:The recruitment for Work stream 1, and blood sampling and genetic analysis for Work stream 2 were completed in February 2023. Data collection for Work stream 3 was completed in March 2023. Data analysis for Work streams 1, 2, 3a, and 3b is projected to be completed by June 2023, with the results of this study anticipated to be published by December 2023.Conclusions:This study will provide evidence on which clinical diagnostic criterion is the best to detect FH in the Malaysian primary care setting. The full spectrum of genetic mutations in the FHCGs including novel pathogenic variants will be identified. Patients’ perspectives while undergoing genetic testing and the primary care physicians experience in utilizing the web-based tool will be established. These findings will have tremendous impact on the management of patients with FH in primary care and subsequently reduce their risk of premature coronary artery disease.International Registered Report Identifier (IRRID):DERR1-10.2196/4791
    corecore