27 research outputs found

    Unsteady boundary layer flow over a sphere in a porous medium

    Get PDF
    This study focuses on the problem of unsteady boundary layer flow over a sphere in a porous medium. The governing equations which consists of a system of dimensional partial differential equations is applied with dimensionless parameter in order to obtain non-dimensional partial differential equations. Later, the similarity transformation is performed in order to attain nonsimilar governing equations. Afterwards, the governing equations are solved numerically by using the Keller-Box method in Octave programme. The effect of porosity parameter is examined on separation time, velocity profile and skin friction of the unsteady flow. The results attained are presented in the form of table and graph

    Petrography and Paleoenvironmental Interpretation of Taloka and Dukamaje Formations, Southern Gadon Mata, Goronyo, Sokoto Basin-Nigeria

    Get PDF
    Petrographic study of the various rock units from Gadon Mata area of Goronyo in Sokoto Basin was carried out. Sedimentary structures were used for Paleoenvironmental Interpretation of Taloka and Dukamaje Formations from Sokoto Basin-Nigeria. The two formations which forms part of Rabah Sheet 11NE lies in the southeastern sector of the Iullemmeden Basin. The study area is bounded by latitudes 13018'38"N to 13021'58"N and longitudes 5047'47"E to 5050'35"E covering 30Km2. The mapping exercise was carried out using a topographic base map on the scale of 1:30,000. The area is made up of Maastrichtian sediments-Taloka and Dukamaje Formations. Taloka Formation is of deltaic/brackish water environment and is made up of white, grey, brown siltstones, friable sandstones, claystones and biogenic structures. It is of tidal flat depositional environment as confirmed by sedimentary structures like abundant bioturbation, rhythmic bedding and the wavy beddings. The Dukamaje Formation is of marginal marine environment comprising of shales, limestones and mudstones with vertebrate fragments. The abundance of mudcrack can be useful in the interpretation of paleoclimate as they are common in warmer climates. Similarly, while the calcite crystals exhibiting spherulitic texture observed in the thin section implies deposition in shallow agitated marine water of the Dukamaje Formation. Keywords: Petrographic, Sedimentary structures, Paleoenvironmental, Taloka, Dukamaje, Formation, Iullemmeden

    Acquiring anatomical representation of human maxilla for rapid maxillary expansion

    Get PDF
    The purpose of the study is to model and provide a better understanding of maxilla bone involved in the treatment for rapid maxillary expander (RME) for dento-facial applications. The treatment is recommended for patients presented with an arch width deficiency named cross bites. Cross bites often cause abnormal physical forces that disrupt the balance of the occlusal relationship. More commonly, the maxilla or the upper jaw appears to be narrow and contributes to significant degree of crowding in the mouth. Early investigators [1-4] discovered that rapid maxillary expansion resulted in a splitting of the median palatal suture. The expansion is possible with the process of bone resorption and new bone deposition thus maintaining the expansion achieved [10]. This preliminary study shows that the FE model has the potential to be a valuable tool for further analysis of dental simulation and the understanding of orthodontic treatment

    EXPERIMENTAL INVESTIGATION ON COOLING EFFECT OF SPHERICAL DIMPLED PROFILE ALUMINUM BLOCK BY THE TAGUCHI METHOD

    Get PDF
    Dimple profile plays a crucial role in enhancement of cooling process of various engineering application. This paper presents experimental investigation of convection heat transfer over spherical dimple on an aluminum block. In this study, an experimental investigation was carried out to observe the cooling effect under several conditions which are flow condition, dimple orientation, diameter of dimple, room temperature, air velocity, input of heat energy and condition of wind tunnel. A design of experiments technique was adopted in the form of orthogonal array L8 (23), Taguchi 2-Level approach. A total of 4 types dimpled surface are studied. The ANOVA results shows the room temperature is the major contributing factor towards rapid cooling process followed by wind tunnel condition, radius of dimple, air velocity, flow region and heat input. It was observed that the cooling time of 13 minutes can be achieved during laminar flow, 5 mm of dimple diameter, 60° angle of dimple orientation, 18 m/s of air velocity, 20 °C of room temperature

    Pairing as an instructional strategy to promote soft skills amongst clinical dental students

    Get PDF
    Training dentists today is challenging as they are expected to provide a wide range of dental care. In the provision of good dental care, soft skills are equally important as clinical skills. Therefore in dental education the development of soft skills are of prime concern. This study sought to identify the development of soft skills when dental students are paired in their clinical training. In this perception study, four open-ended items were used to elicit students’ feedback on the appropriateness of using clinical pairing as an instructional strategy to promote soft skills. The most frequently cited soft skills were teamwork (70%) and communication (25%) skills. However, both negative and positive behaviours were reported. As for critical thinking and problem solving skills, more positive behaviours were reported for abilities such as to explain, analyze, find ideas and alternative solutions, and make decisions. Leadership among peers was not evident as leading without legitimate authority could be a hindrance to its development. If clinical pairing is to be used as an effective instructional strategy to promote soft skills amongst students, clear guidelines need to be developed to prepare students to work in a dental team and the use of appropriate assessment tools can facilitate the development of these soft skills

    Pairing as an instructional strategy to promote soft skills amongst clinical dental students

    Get PDF
    Training dentists today is challenging as they are expected to provide a wide range of dental care. In the provision of good dental care, soft skills are equally important as clinical skills. Therefore in dental education the development of soft skills are of prime concern. This study sought to identify the development of soft skills when dental students are paired in their clinical training. In this perception study, four open-ended items were used to elicit students’ feedback on the appropriateness of using clinical pairing as an instructional strategy to promote soft skills. The most frequently cited soft skills were teamwork (70%) and communication (25%) skills. However, both negative and positive behaviours were reported. As for critical thinking and problem solving skills, more positive behaviours were reported for abilities such as to explain, analyze, find ideas and alternative solutions, and make decisions. Leadership among peers was not evident as leading without legitimate authority could be a hindrance to its development. If clinical pairing is to be used as an effective instructional strategy to promote soft skills amongst students, clear guidelines need to be developed to prepare students to work in a dental team and the use of appropriate assessment tools can facilitate the development of these soft skills

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Polymorphism: an evaluation of the potential risk to the quality of drug products from the Farmácia Popular Rede Própria

    Full text link

    Mixed convection of micropolar fluid on a permeable stretching surface of another quiescent fluid

    Get PDF
    In recent decades, micropolar fluid has been one of the major interesting research subjects due to the numerous applications such as blood, paint, body fluid, polymers, colloidal fluid and suspension fluid. However, the behavior of micropolar fluid flow over a permeable stretching surface of another quiescent fluid with a heavier density of micropolar fluid under the condition of mixed convection is still unknown. Thus, the current work aims to investigate numerically the mixed convection of micropolar fluid flow over a permeable stretching surface of another quiescent fluid. In this research, the similarity transformation is implemented to reduce the boundary layer governing equations from partial differential equations to a system of nonlinear ordinary differential equations. Then, this model is solved numerically using shooting technique with Runge-Kutta-Gill method and applied in Jupyter Notebook using Python 3 language. The behavior of micropolar fluid in terms of velocity, skin friction, microrotation and temperature are analyzed
    corecore