7 research outputs found

    Computer-Aided Patient-Specific Coronary Artery Graft Design Improvements Using CFD Coupled Shape Optimizer

    Get PDF
    This study aims to (i) demonstrate the efficacy of a new surgical planning framework for complex cardiovascular reconstructions, (ii) develop a computational fluid dynamics (CFD) coupled multi-dimensional shape optimization method to aid patient-specific coronary artery by-pass graft (CABG) design and, (iii) compare the hemodynamic efficiency of the sequential CABG, i.e., raising a daughter parallel branch from the parent CABG in patient-specific 3D settings. Hemodynamic efficiency of patient-specific complete revascularization scenarios for right coronary artery (RCA), left anterior descending artery (LAD), and left circumflex artery (LCX) bypasses were investigated in comparison to the stenosis condition. Multivariate 2D constraint optimization was applied on the left internal mammary artery (LIMA) graft, which was parameterized based on actual surgical settings extracted from 2D CT slices. The objective function was set to minimize the local variation of wall shear stress (WSS) and other hemodynamic indices (energy dissipation, flow deviation angle, average WSS, and vorticity) that correlate with performance of the graft and risk of re-stenosis at the anastomosis zone. Once the optimized 2D graft shape was obtained, it was translated to 3D using an in-house “sketch-based” interactive anatomical editing tool. The final graft design was evaluated using an experimentally validated second-order non-Newtonian CFD solver incorporating resistance based outlet boundary conditions. 3D patient-specific simulations for the healthy coronary anatomy produced realistic coronary flows. All revascularization techniques restored coronary perfusions to the healthy baseline. Multi-scale evaluation of the optimized LIMA graft enabled significant wall shear stress gradient (WSSG) relief (~34%). In comparison to original LIMA graft, sequential graft also lowered the WSSG by 15% proximal to LAD and diagonal bifurcation. The proposed sketch-based surgical planning paradigm evaluated the selected coronary bypass surgery procedures based on acute hemodynamic readjustments of aorta-CA flow. This methodology may provide a rational to aid surgical decision making in time-critical, patient-specific CA bypass operations before in vivo execution

    Antimicrobial Susceptibility Testing, Drug Resistance Mechanisms, and Therapy of Infections with Nontuberculous Mycobacteria

    No full text

    Pharmacokinetics and Pharmacodynamics of Antibacterials, Antifungals, and Antivirals Used Most Frequently in Neonates and Infants

    No full text
    Antimicrobials and antivirals are widely used in young infants and neonates. These patients have historically been largely excluded from clinical trials and, as a consequence, the pharmacokinetics and pharmacodynamics of commonly used antibacterials, antifungals, and antivirals are incompletely understood in this population. This review summarizes the current literature specific to neonates and infants regarding pharmacokinetic parameters and changes in neonatal development that affect antimicrobial and antiviral pharmacodynamics. Specific drug classes addressed include aminoglycosides, aminopenicillins, cephalosporins, glycopeptides, azole antifungals, echinocandins, polyenes, and guanosine analogs. Within each drug class, the pharmacodynamics, pharmacokinetics, and clinical implications and future directions for prototypical agents are discussed. β-Lactam antibacterial activity is maximized when the plasma concentration exceeds the minimum inhibitory concentration for a prolonged period, suggesting that more frequent dosing may optimize β-lactam therapy. Aminoglycosides are typically administered at longer intervals with larger doses in order to maximize exposure (i.e., area under the plasma concentration–time curve) with gestational age and weight strongly influencing the pharmacokinetic profile. Nonetheless, safety concerns necessitate therapeutic drug monitoring across the entire neonatal and young infant spectrum. Vancomycin, representing the glycopeptide class of antibacterials, has a long history of clinical utility, yet there is still uncertainty about the optimal pharmacodynamic index in neonates and young infants. The high degree of pharmacokinetic variability in this population makes therapeutic drug monitoring essential to ensure adequate therapeutic exposure. Among neonates treated with the triazole agent fluconazole, it has been speculated that loading doses may improve pharmacodynamic target attainment rates. The use of voriconazole necessitates therapeutic drug monitoring and dose adjustments for patients with hepatic dysfunction. Neonates treated with lipid-based formulations of the polyene amphotericin B may be at an increased risk of death, such that alternative antifungal agents should be considered for neonates with invasive fungal infections. Alternative antifungal agents such as micafungin and caspofungin also exhibit unique pharmacokinetic considerations in this population. Neonates rapidly eliminate micafungin and require nearly three times the normal adult dose to achieve comparable levels of systemic exposure. Conversely, peak caspofungin concentrations have been reported to be similar among neonates and adults. However, both of these drugs feature favorable safety profiles. Recent studies with acyclovir have suggested that current dosing regimens may not result in therapeutic central nervous system concentrations and more frequent dosing may be required for neonates at later postmenstrual ages. Though ganciclovir and valganciclovir demonstrate excellent activity against cytomegalovirus, they are associated with significant neutropenia. In summary, many pharmacokinetic and pharmacodynamic studies have been conducted in this vulnerable population; however, there are also substantial gaps in our knowledge that require further investigation. These studies will be invaluable in determining optimal neonatal dosing regimens that have the potential to improve clinical outcomes and decrease adverse effects associated with antimicrobial and antiviral treatments

    Pharmacodynamics of Antibiotics-Consequences for Dosing: Proceedings of a Symposium Held in Stockholm, June 7–9, 1990

    No full text
    corecore