65 research outputs found

    A Nondestructive Eggshell Thickness Measurement Technique Using Terahertz Waves

    Get PDF
    Eggshells play a number of important roles in the avian and reptile kingdom: protection of internal contents and as a major source of minerals for developing embryos. However, when researching these respective roles, eggshell thickness measurement remains a bottleneck due to the lack of a non-destructive measurement techniques. As a result, many avian and reptile research protocols omit consideration of eggshell thickness bias on egg or embryo growth and development. Here, we validate a non-destructive method to estimate eggshell thickness based on terahertz (THz) reflectance spectroscopy using chicken white coloured eggs. Since terahertz waves are reflected from outer air-eggshell interface, as well as the inner eggshell-membrane boundary, the resulting interference signals depend on eggshell thickness. Thus, it is possible to estimate shell thickness from the oscillation distance in frequency-domain. A linear regression-based prediction model for non-destructive eggshell thickness measurement was developed, which had a coefficient of determination (R2) of 0.93, RMSEP of 0.009, RPD of 3.45 and RER 13.67. This model can estimate eggshell thickness to a resolution of less than 10 μm. This method has the potential to expand the protocols in the field of avian and reptile research, as well as be applied to industrial grading of eggs

    Discrete kink dynamics in hydrogen-bonded chains I: The one-component model

    Get PDF
    We study topological solitary waves (kinks and antikinks) in a nonlinear one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays role of the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with different symmetry properties. We study the stability and bifurcation structure of all these stationary kink states. An exactly solvable model with a piecewise ``parabola-constant'' approximation of the double-Morse potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system parameters is studied. Discrete travelling-wave solutions of a narrow permanent profile are shown to exist, depending on the anharmonicity of the Morse potential and the cooperativity of the hydrogen bond (the coupling constant of the interaction between nearest-neighbor protons).Comment: 12 pages, 20 figure

    Model of P- and T-electroreceptors of weakly electric fish.

    Get PDF
    To clarify the microscopic mechanisms by which P- and T-receptors encode amplitude modulation and zero crossing time of jamming signals, we present a model of P- and T-receptors based on their physiological and anatomical properties. The model consists of a receptor cell, supporting cells, and an afferent nerve fiber. The basal membrane of the receptor cell includes voltage-sensitive Ca2+ channels, Ca(2+)-activated K+ channels, and leak channels of Na+, K+, and Cl-. The driving force of potential change under stimulation is generated by the voltage-sensitive Ca2+ channels, and the suppressing force of the change is generated by Ca(2+)-activated K+ channels. It has been shown that in T-receptor cells the driving force is much stronger than the suppressing force, whereas in P-receptor cells the driving force is comparable with the suppressing force. The difference in various kinds of response properties between P- and T-receptors have been consistently explained based on the difference in the relative strengths of the driving and suppressing forces between P- and T-receptor cells. The response properties considered are encoding function, probability of firing of afferent nerve, pattern of damped oscillation, shape of tuning curves, values of the optimum frequency, and response latency
    corecore