3 research outputs found

    Dirty fish versus squeaky clean mice: dissecting interspecies differences between animal models of interferonopathy

    Get PDF
    Autoimmune and autoinflammatory diseases are rare but often devastating disorders, underpinned by abnormal immune function. While some autoimmune disorders are thought to be triggered by a burden of infection throughout life, others are thought to be genetic in origin. Among these heritable disorders are the type I interferonopathies, including the rare Mendelian childhood-onset encephalitis Aicardi-Goutières syndrome. Patients with Aicardi Goutières syndrome are born with defects in enzymes responsible for nucleic acid metabolism and develop devastating white matter abnormalities resembling congenital cytomegalovirus brain infection. In some cases, common infections preceded the onset of the disease, suggesting immune stimulation as a potential trigger. Thus, the antiviral immune response has been actively studied in an attempt to provide clues on the pathological mechanisms and inform on the development of therapies. Animal models have been fundamental in deciphering biological mechanisms in human health and disease. Multiple rodent and zebrafish models are available to study type I interferonopathies, which have advanced our understanding of the human disease by identifying key pathological pathways and cellular drivers. However, striking differences in phenotype have also emerged between these vertebrate models, with zebrafish models recapitulating key features of the human neuropathology often lacking in rodents. In this review, we compare rodent and zebrafish models, and summarize how they have advanced our understanding of the pathological mechanisms in Aicardi Goutières syndrome and similar disorders. We highlight recent discoveries on the impact of laboratory environments on immune stimulation and how this may inform the differences in pathological severity between mouse and zebrafish models of type I interferonopathies. Understanding how these differences arise will inform the improvement of animal disease modeling to accelerate progress in the development of therapies for these devastating childhood disorders

    Downregulation of genes with a function in axon outgrowth and synapse formation in motor neurones of the VEGF(delta/delta) mouse model of amyotrophic lateral sclerosis

    Get PDF
    Background: Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen that stimulates vasculogenesis. It has also been shown to act as a neurotrophic factor in vitro and in vivo. Deletion of the hypoxia response element of the promoter region of the gene encoding VEGF in mice causes a reduction in neural VEGF expression, and results in adult-onset motor neurone degeneration that resembles amyotrophic lateral sclerosis (ALS). Investigating the molecular pathways to neurodegeneration in the VEGF(delta/delta) mouse model of ALS may improve understanding of the mechanisms of motor neurone death in the human disease. Results: Microarray analysis was used to determine the transcriptional profile of laser captured spinal motor neurones of transgenic and wild-type littermates at 3 time points of disease. 324 genes were significantly differentially expressed in motor neurones of presymptomatic VEGF(delta/delta) mice, 382 at disease onset, and 689 at late stage disease. Massive transcriptional downregulation occurred with disease progression, associated with downregulation of genes involved in RNA processing at late stage disease. VEGF(delta/delta) mice showed reduction in expression, from symptom onset, of the cholesterol synthesis pathway, and genes involved in nervous system development, including axonogenesis, synapse formation, growth factor signalling pathways, cell adhesion and microtubule-based processes. These changes may reflect a reduced capacity of VEGF(delta/delta) mice for maintenance and remodelling of neuronal processes in the face of demands of neural plasticity. The findings are supported by the demonstration that in primary motor neurone cultures from VEGF(delta/delta) mice, axon outgrowth is significantly reduced compared to wild-type littermates. Conclusions: Downregulation of these genes involved in axon outgrowth and synapse formation in adult mice suggests a hitherto unrecognized role of VEGF in the maintenance of neuronal circuitry. Dysregulation of VEGF may lead to neurodegeneration through synaptic regression and dying-back axonopathy

    Impairment of the tRNA-splicing endonuclease subunit 54 (tsen54) gene causes neurological abnormalities and larval death in zebrafish models of pontocerebellar hypoplasia

    No full text
    Pontocerebellar hypoplasia (PCH) represents a group (PCH1-6) of neurodegenerative autosomal recessive disorders characterized by hypoplasia and/or atrophy of the cerebellum, hypoplasia of the ventral pons, progressive microcephaly and variable neocortical atrophy. The majority of PCH2 and PCH4 cases are caused by mutations in the TSEN54 gene; one of the four subunits comprising the tRNA-splicing endonuclease (TSEN) complex. We hypothesized that TSEN54 mutations act through a loss of function mechanism. At 8 weeks of gestation, human TSEN54 is expressed ubiquitously in the brain, yet strong expression is seen within the telencephalon and metencephalon. Comparable expression patterns for tsen54 are observed in zebrafish embryos. Morpholino (MO) knockdown of tsen54 in zebrafish embryos results in loss of structural definition in the brain. This phenotype was partially rescued by co-injecting the MO with human TSEN54 mRNA. A developmental patterning defect was not associated with tsen54 knockdown; however, an increase in cell death within the brain was observed, thus bearing resemblance to PCH pathophysiology. Additionally, N-methyl-N-nitrosourea mutant zebrafish homozygous for a tsen54 premature stop-codon mutation die within 9 days post-fertilization. To determine whether a common disease pathway exists between TSEN54 and other PCH-related genes, we also monitored the effects of mitochondrial arginyl-tRNA synthetase (rars2; PCH1 and PCH6) knockdown in zebrafish. Comparable brain phenotypes were observed following the inhibition of both genes. These data strongly support the hypothesis that TSEN54 mutations cause PCH through a loss of function mechanism. Also we suggest that a common disease pathway may exist between TSEN54- and RARS2-related PCH, which may involve a tRNA processing-related mechanism.
    corecore