12 research outputs found

    Adaptive optics in high-contrast imaging

    Full text link
    The development of adaptive optics (AO) played a major role in modern astronomy over the last three decades. By compensating for the atmospheric turbulence, these systems enable to reach the diffraction limit on large telescopes. In this review, we will focus on high contrast applications of adaptive optics, namely, imaging the close vicinity of bright stellar objects and revealing regions otherwise hidden within the turbulent halo of the atmosphere to look for objects with a contrast ratio lower than 10^-4 with respect to the central star. Such high-contrast AO-corrected observations have led to fundamental results in our current understanding of planetary formation and evolution as well as stellar evolution. AO systems equipped three generations of instruments, from the first pioneering experiments in the nineties, to the first wave of instruments on 8m-class telescopes in the years 2000, and finally to the extreme AO systems that have recently started operations. Along with high-contrast techniques, AO enables to reveal the circumstellar environment: massive protoplanetary disks featuring spiral arms, gaps or other asymmetries hinting at on-going planet formation, young giant planets shining in thermal emission, or tenuous debris disks and micron-sized dust leftover from collisions in massive asteroid-belt analogs. After introducing the science case and technical requirements, we will review the architecture of standard and extreme AO systems, before presenting a few selected science highlights obtained with recent AO instruments.Comment: 24 pages, 14 figure

    SCExAO/MEC and CHARIS Discovery of a Low Mass, 6 AU-Separation Companion to HIP 109427 using Stochastic Speckle Discrimination and High-Contrast Spectroscopy

    Get PDF
    We report the direct imaging discovery of a low-mass companion to the nearby accelerating A star, HIP 109427, with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument coupled with the MKID Exoplanet Camera (MEC) and CHARIS integral field spectrograph. CHARIS data reduced with reference star PSF subtraction yield 1.1-2.4 μ\mum spectra. MEC reveals the companion in YY and JJ band at a comparable signal-to-noise ratio using stochastic speckle discrimination, with no PSF subtraction techniques. Combined with complementary follow-up LpL_{\rm p} photometry from Keck/NIRC2, the SCExAO data favors a spectral type, effective temperature, and luminosity of M4-M5.5, 3000-3200 KK, and log10(L/L)=2.280.04+0.04\log_{10}(L/L_{\rm \odot}) = -2.28^{+0.04}_{-0.04}, respectively. Relative astrometry of HIP 109427 B from SCExAO/CHARIS and Keck/NIRC2, and complementary Gaia-Hipparcos absolute astrometry of the primary favor a semimajor axis of 6.550.48+3.06.55^{+3.0}_{-0.48} au, an eccentricity of 0.540.15+0.280.54^{+0.28}_{-0.15}, an inclination of 66.714+8.566.7^{+8.5}_{-14} degrees, and a dynamical mass of 0.2800.059+0.180.280^{+0.18}_{-0.059} MM_{\odot}. This work shows the potential for extreme AO systems to utilize speckle statistics in addition to widely-used post-processing methods to directly image faint companions to nearby stars near the telescope diffraction limit.Comment: 13 pages, 7 figures, 3 table

    Information-theoretical Limits of Recursive Estimation and Closed-loop Control in High-contrast Imaging

    No full text
    A lower bound on unbiased estimates of wave front errors (WFEs) is presented for the linear regime of small perturbation and active control of a high-contrast region (dark hole). Analytical approximations and algorithms for computing the closed-loop covariance of the WFE modes are provided for discrete- and continuous-time linear WFE dynamics. Our analysis applies to both image-plane and non-common-path wave front sensing (WFS) with Poisson-distributed measurements and noise sources (i.e., photon-counting mode). Under this assumption, we show that recursive estimation benefits from infinitesimally short exposure times, is more accurate than batch estimation and, for high-order WFE drift dynamical processes, scales better than batch estimation with amplitude and star brightness. These newly derived contrast scaling laws are a generalization of previously known theoretical and numerical results for turbulence-driven adaptive optics. For space-based coronagraphs, we propose a scheme for combining models of WFE drift, low-order non-common-path WFS (LOWFS) and high-order image-plane WFS (HOWFS) into closed-loop contrast estimates. We also analyze the impact of residual low-order WFE, sensor noise, and other sources incoherent with the star, on closed-loop dark hole maintenance and the resulting contrast. As an application example, our model suggests that the Roman Space Telescope might operate in a regime that is dominated by incoherent sources rather than WFE drift, where the WFE drift can be actively rejected throughout the observations with residuals significantly dimmer than the incoherent sources. The models proposed in this paper make possible the assessment of the closed-loop contrast of coronagraphs with combined LOWFS and HOWFS capabilities, and thus help estimate WFE stability requirements of future instruments. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Achromatic Prolate Coronagraph using Interferometric Apodisations

    No full text
    Recent developments in coronagraphy have increased the reachable dynamic range limit of telescopes and thus opened the possibility for the imaging of fainter and fainter companions. They rely on a series of modifications of the original concept involving amplitude and phase masks in either the pupil or the image plane. They are designed to operate optimally at one wavelength. In this paper we first study the chromatic leakage in Pupil Apodised Lyot Coronagraphs and then present a theoretical solution that create a polychromatic null while maximizing the photon flux from the companion. Finally we discuss a promising experimental implementation of this solution using interferometric apodisations

    The Fresnel interferometric imager

    No full text
    International audienceThe Fresnel interferometric imager is a new kind of high angular resolution space instrument for the UV domain, and the related astrophysical targets. This optical concept is meant to allow larger and lighter apertures in space than solid state optics. It yields high dynamic range images and same resolution as that of a solid aperture of the same size. The long focal lengths of the Fresnel imager (a few kilometers) require operation by two-vessel formation flying in space. The first vessel holds a large and thin opaque foil punched with thousands of holes: the interferometric array, the second vessel holds the focal instrumentation. This Fresnel imager has been designed for mapping high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Compact objects such as large stellar photospheres may be imaged with array sizes of a few meters in the UV. Larger and more complex fields can also be imaged, although with a lesser dynamic range, such as small fields on galactic clouds or extragalactic fields, or in an other domain: small solar system bodies. We present the first images obtained on artificial sources with an 8 cm laboratory testbed array having 26680 apertures, the measured dynamic range of these images and their diffraction limited angular resolution. A 3 m class probatory space mission will be studied and follow a validation path, It has been submitted as a proposal to the ESA Cosmic Vision program
    corecore