2 research outputs found

    MAGNETIC POLE REPULSIVE DAMPER (MPRD): A PROMISING SOLUTION FOR SEISMIC PROTECTION OF STRUCTURES

    Get PDF
    Owing to its high energy dissipation characteristics, the passive damper is an effective means of mitigating natural hazards for structures. In this study, a novel magnetic pole repulsive damper (MPRD), designed for reducing structural responses during natural hazards such as earthquakes, was developed and its performance was validated. The MPRD is an effective solution for seismic protection that works on the principle of magnetic repulsion and has a higher energy dissipation capacity than conventional dampers. The MPRD was fabricated using mild steel, neodymium magnets, and a set of helical springs. Two scaled reinforced concrete frames were tested using a 50 kN loading actuator. One frame was equipped with the MPRD, while the other served as a conventional frame for comparison. The frame with the MPRD showed reduced displacements. Compared with the conventional frame, that with the MPRD exhibited an increase in load of 40 % and an increase in energy dissipation of 6,44 %. Further, an increase in lateral stiffness, a 19,23 % increase in stiffness degradation, and changes in crack patterns were observed in the frame with MPRD compared to the conventional frame. The study\u27s success in validating the MPRD performance in reducing structural responses in moderate to high seismicity regions makes it a promising solution for building seismic protection.

    EXPERIMENTAL AND NUMERICAL SIMULATION OF A NOVEL MAGNETIC POLE REPULSIVE PASSIVE DAMPER FOR VIBRATION CONTROL

    Get PDF
    This article presents a novel magnetic pole repulsive damper (MPRD) incorporating neodymium magnetic repulsive blocks and springs. The study explores the mechanical properties of the springs and magnetic blocks through numerical simulations using ANSYS and experimental evaluation. To gain deeper insights into the behaviour of the MPRD, an accurate and high-fidelity finite element model was developed. The evaluation process involved a comprehensive comparison between the numerical simulations and experimental tests, explicitly focusing on cyclic compression–tension forces. The study encompassed the functioning, design implications, fabrication technique, mechanical performance, and numerical simulation for the cyclic compression–tension forces of the MPRD. The cyclic compression–tension tests revealed a gradual increase in force, with the MPRD achieving an ultimate force of 2,877 kN. The MPRD exhibited robust hysteresis behaviour in cyclic loading, showing its capacity to undergo and uphold the stability of the combination of its materials. The cyclic compression–tension results indicated the maximum force carrying capability of the damper. This resilience implies its full reusability in such scenarios. The comparison between cyclic compression–tension tests confirmed the alignment between the numerical simulation and experimental investigation.
    corecore