13 research outputs found
Soybean - Biomass, Yield and Productivity
Plants are important for a permanent ecosystem, because in the ecological pyramid plants support all the other living organisms at the base. Very important organization is thought to be the integral process of resource, transport, partitioning, metabolism, and production, which involves yield, biomass, and productivity in plants. Accordingly, it is important to obtain more information about the knowledge concerning yield, biomass, and productivity in plants. Soybean is one of the main crops largely contributing to our life, which is thought to be connected to our ecosystem through the above-mentioned integral process. This book focuses on the soybean, and reviews and research concerning the yield, biomass, and productivity of soybean are presented herein. This text updates the book published in 2017. Although there are many difficulties, the main aim of this book is to present a basis for the above-mentioned integral processes of resource, transport, partitioning, metabolism, and production, which involves yield, biomass, and productivity in plants (soybean), and to understand what supports this basis and the integral process. It is hoped that this and the preceding book will be essential reads
Soybean - The Basis of Yield, Biomass and Productivity
Soybean is one of the organisms largely contributing to our life. Therefore, it is important to know soybean from various aspects. The knowledge and soybean itself will be greatly useful, if they are soundly used. The chapters constituting this book present reviews and researches especially concerning the basis of yield, biomass, and productivity in soybean. Yield, biomass, and productivity in plants are some of the bases for maintaining or improving our ecosystem which includes our life and surrounding environments. Therefore, this book is expected to be useful for many people. Of course, more researches and investigations are important to further gain the knowledge concerning the basis of yield, biomass, and productivity and make them useful for our ecosystem
Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants
Despite the wide uses of potted plants, information on how pot size affects plant photosynthetic matter production is still considerably limited. This study investigated with soybean plants how transplantation into larger pots affects various characteristics related to photosynthetic matter production. The transplantation was analyzed to increase leaf photosynthetic rate, transpiration rate, and stomatal conductance without affecting significantly leaf intercellular CO2 concentration, implicating that the transplantation induced equal increases in the rate of CO2 diffusion via leaf stomata and the rate of CO2 fixation in leaf photosynthetic cells. Analyses of Rubisco activity and contents of a substrate (ribulose-1,5-bisphosphate (RuBP)) for Rubisco and total protein in leaf suggested that an increase in leaf Rubisco activity, which is likely to result from an increase in leaf Rubisco content, could contribute to the transplantation-induced increase in leaf photosynthetic rate. Analyses of leaf major photosynthetic carbohydrates and dry weights of source and sink organs revealed that transplantation increased plant sink capacity that uses leaf starch, inducing a decrease in leaf starch content and an increase in whole plant growth, particularly, growth of sink organs. Previously, in the same soybean species, it was demonstrated that negative correlation exists between leaf starch content and photosynthetic rate and that accumulation of starch in leaf decreases the rate of CO2 diffusion within leaf. Thus, it was suggested that the transplantation-induced increase in plant sink capacity decreasing leaf starch content could cause the transplantation-induced increase in leaf photosynthetic rate by inducing an increase in the rate of CO2 diffusion within leaf and thereby substantiating an increase in leaf Rubisco activity in vivo. It was therefore concluded that transplantation of soybean plants into larger pots attempted in this study increased the plant photosynthetic matter production by increasing mainly sink capacity that uses leaf starch for whole plant growth, particularly, growth of sink organs