4,164 research outputs found

    Impulse Generation by an Open Shock Tube

    Get PDF
    We perform experimental and numerical studies of a shock tube with an open end. The purpose is to investigate the impulse due to the exhaust of gases through the open end of the tube as a model for a partially filled detonation tube as used in pulse detonation engine testing. We study the effects of the pressure ratio (varied from 3 to 9.2) and the volume ratio (expressed as fill fractions) between the driver and driven section. Two different driver gases, helium and nitrogen, and fill fractions between 5 and 100% are studied; the driven section is filled with air. For both driver gases, increasing the pressure ratio leads to larger specific impulses. The specific impulse increases for a decreasing fill fraction for the helium driver, but the impulse is almost independent of the fill fraction for the nitrogen driver. Two-dimensional (axisymmetric) numerical simulations are carried out for both driver gases. The simulation results show reasonable agreement with experimental measurements at high pressure ratios or small fill fractions, but there are substantial discrepancies for the smallest pressure ratios studied. Empirical models for the impulse in the limits of large and small fill fractions are also compared with the data. Reasonable agreement is found for the trends with fill fractions using the Gurney or Sato model at large fill fractions, but only Cooper’s bubble model is able to predict the small fill fraction limit. Computations of acoustic impedance and numerical simulations of unsteady gas dynamics indicate that the interaction of waves with the driver-driven gas interface and the propagation of waves in the driven gas play an essential role in the partial-fill effect

    Combining cellular and gene therapy approaches for treatment of intracranial tumors.

    Get PDF
    New treatments are needed for brain metastasis, which is associated with high morbidity and mortality. Two novel cellular and gene therapy modalities were evaluated in xenograft models for human breast cancer. The individual and especially the combined treatments with alloreactive cytotoxic T lymphocytes and replicating retroviral vectors coding for prodrug activating enzymes followed later with nontoxic prodrug demonstrated efficacy without off-target effects

    Gene Expression Profile Changes After Short-activating RNA-mediated Induction of Endogenous Pluripotency Factors in Human Mesenchymal Stem Cells

    Get PDF
    It is now recognized that small noncoding RNA sequences have the ability to mediate transcriptional activation of specific target genes in human cells. Using bioinformatics analysis and functional screening, we screened short-activating RNA (saRNA) oligonucleotides designed to target the promoter regions of the pluripotency reprogramming factors, Kruppel-like factor 4 (KLF4) and c-MYC. We identified KLF4 and c-MYC promoter-targeted saRNA sequences that consistently induced increases in their respective levels of nascent mRNA and protein expression in a time- and dose-dependent manner, as compared with scrambled sequence control oligonucleotides. The functional consequences of saRNA-induced activation of each targeted reprogramming factor were then characterized by comprehensively profiling changes in gene expression by microarray analysis, which revealed significant increases in mRNA levels of their respective downstream pathway genes. Notably, the microarray profile after saRNA-mediated induction of endogenous KLF4 and c-MYC showed similar gene expression patterns for stem cell- and cell cycle-related genes as compared with lentiviral vector-mediated overexpression of exogenous KLF4 and c-MYC transgenes, while divergent gene expression patterns common to viral vector-mediated transgene delivery were also noted. The use of promoter-targeted saRNAs for the activation of pluripotency reprogramming factors could have broad implications for stem cell research

    Analytical Models for the Thrust of a Rotating Detonation Engine

    Get PDF
    Two models are proposed for rotating detonation engine performance. The first model is motivated by models of pulse detonation engine performance which are based on the pressure-time history within the detonation tube. The present work extends those ideas to treat rotating detonation engines with a control volume analysis that considers the forces within the combustion chamber. The key scaling parameters for this model are the height of the reactant layer just ahead of the detonation wave and the computed Chapman-Jouguet pressure and velocity. The thrust can be estimated using these parameters and a simple functional form of the pressure history on the injector surface. The second model is based on the approximation of mean axial flow and uses a conventional control volume analysis that focuses on exit conditions to evaluate thrust. The axial flow speed and thrust are evaluated based on approximating the flow following the detonation as isentropic and considering a two-dimensional expansion that converts azimuthal motion into purely axial flow. Numerical and analytic evaluation of these models demonstrates that predicted thrust and specific impulse exhibit the same scaling relationships with mixture properties as pulse detonation engines

    Effects of Rattling Phonons on the Quasiparticle Excitation and Dynamics in the Superconducting β\beta-Pyrochlore KOs2_2O6_6

    Get PDF
    Microwave penetration depth λ\lambda and surface resistance at 27 GHz are measured in high quality crystals of KOs2_2O6_6. Firm evidence for fully-gapped superconductivity is provided from λ(T)\lambda(T). Below the second transition at Tp8T_{\rm p}\sim 8 K, the superfluid density shows a step-like change with a suppression of effective critical temperature TcT_{\rm c}. Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below TpT_{\rm p}.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    Volovik effect in a highly anisotropic multiband superconductor: experiment and theory

    Get PDF
    We present measurements of the specific heat coefficient \gamma(= C/T) in the low temperature limit as a function of an applied magnetic field for the Fe-based superconductor BaFe2_2(As0.7_{0.7}P0.3_{0.3})2_2. We find both a linear regime at higher fields and a limiting square root HH behavior at very low fields. The crossover from a Volovik-like H\sqrt{H} to a linear field dependence can be understood from a multiband calculation in the quasiclassical approximation assuming gaps with different momentum dependence on the hole- and electron-like Fermi surface sheets.Comment: 11 pages, 8 figures, 1 table, submitted to Phys. Rev.
    corecore