57 research outputs found

    Emission scenario model for regional air pollution

    Get PDF
    Air pollution emissions are produced in a wide variety of sources. They often result in detrimental impacts on both environments and human populations. To assess the emissions and impacts of air pollution, mathematical models have been developed. This study presents results from the application of an air pollution emission model, the Finnish Regional Emission Scenario (FRES) model, that covers the emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), non-methane volatile organic compounds (NMVOCs) and primary particulate matter (TSP, PM10, PM2.5 and PM1) in high 1 ´ 1 km2 spatial resolution over the area of Finland. The aims of the study were to identify key emission sources in Finland at present and in the future, to assess the effects of climate policies on air pollution, and to estimate emission reduction potentials and costs. Uncertainties in emission estimates were analyzed. Finally, emission model characteristics for use in different air pollution impact applications were discussed.The main emission sources in Finland are large industrial and energy production plants for SO2 (64% of 76 Gg a-1 total in the year 2000). Traffic vehicles are the main contributors for NOx (58% of 206 Gg a-1), NMVOCs (54% of 152 Gg a-1) and primary PM2.5 (26% of 31 Gg a-1) emissions. Agriculture is the key source for NH3 (97% of 33 Gg a-1). Other important sources are domestic wood combustion for primary PM2.5 (25%) and NMVOCs (12%), and fugitive dust emissions from traffic and other activities for primary PM10 (30% of 46 Gg a-1).In the future, the emissions of traffic vehicle exhaust will decrease considerably, by 76% (NMVOCs), 74% (primary PM2.5) and 60% (NOx), from 2000 to 2020, because of tightening emission legislations. Rather smaller decrease is anticipated in the emissions of large combustion plants, depending on future primary energy choices. Sources that are not subject to tight emission standards, e.g. domestic combustion and traffic-induced fugitive dust (i.e. non-exhaust), pose a risk for increasing emissions.The majority of measures to abate climate change, e.g. energy saving and non-combustion based energy production, lead to co-benefits as reduced air pollution emissions, especially of SO2 (20% to 28% reduction). However, promotion of domestic wood combustion poses a risk for increase in PM2.5 and NMVOCs emissions. Further emission reductions with feasible control costs are possible mainly for PM2.5 in small energy production plants and domestic combustion sources. Highest emission uncertainties were estimated for primary PM emission factors of domestic wood combustion, traffic non-exhaust sources and small energy production plants.The most important characteristics of emission models are correct location information of flue gas stacks of large plants for the assessment of acidification, and description of small polluters with high spatial resolution when assessing impacts on populations. Especially primary PM2.5 emissions originate to a considerable degree from small low-altitude sources in urban areas, and therefore it is important to be able to assess the impacts that take place near the emission sources. Detailed descriptions of large plants and 1 ´ 1 km2 spatial resolution for small emission sources applied in the FRES model enable its use in the assessment of various national environmental impacts and their reduction possibilities.The main contribution of this work was the development of a unique modeling framework to assess emission scenarios of multiple air pollutants in high sectoral and spatial resolution in Finland. The developed FRES model provides support for Finnish air pollution polices and a tool to assess the co-benefits and trade-offs of climate change strategies on air pollution

    Fine particle emissions, emission reduction potential and reduction costs in Finland in 2020

    Get PDF
    Fine particulate matter (PM2.5) in the atmosphere have been associated with severe human health effects. This report explores future emissions of primary PM2.5, their reduction potential and related reduction costs in Finland. One activity pathway of 2020 of the Finnish Climate Strategy was studied with two different PM emission control utilization scenarios: (1) "Baseline" which involves PM control technology utilization complying with current legislation, and (2) "Reduction" which assumes the use of maximum technically and economically feasible emission reduction measures. The studied sectors included stationary combustion and industrial activities. The work was performed using the Finnish Regional Emission Scenario (FRES) model of Finnish environment institute (SYKE). Total emission reduction potential below "Baseline" was estimated at 6.7 Gg(PM2.5) a-1, or 22% of the total emissions. The biggest relatively cost-efficient reductions (marginal cost below 5000 € Mg-1) can be achieved by the use of small electrostatic precipitators (ESPs) in domestic wood log boilers, 2.0 Gg a-1. In large-scale combustion installations in power plants and industry the reduction of 1.2 Gg a-1 is possible by fabric filter installations instead of ESPs. A comparable reduction with slightly higher costs can be achieved in small (below 5 MWth) industrial boilers by the introduction of ESPs. For industrial processes potential occurs in few individual plants. The uncertainties in emission reduction and cost estimates are biggest for domestic combustion and industrial processes. This report presents cost-efficiency estimates of future emission reductions per mass of PM2.5 reduced. However, the magnitude of health benefits gained from emission reductions are different for different emission sources, depending on e.g. the altitude of emission release, the emission location in relation to the location of population etc. The results of this study are used in the integrated assessment modeling framework developed in the KOPRA project in order to link the information of emission reductions and costs, atmospheric dispersion and induced health impacts

    Pitkän aikavälin ilmasto- ja energiastrategian ympäristöarviointi

    Get PDF
    Arvioinnissa tarkasteltiin erityisesti niitä pitkän aikavälin ilmasto- ja energiastrategian ympäristövaikutuksia, jotka voivat syntyä kasvihuonekaasupäästöjen vähentämisen lisäksi. Pääasiassa ilmastonmuutosta hillitsevät toimet, kuten energiansäästö ja uusiutuvan energiantuotannon lisäys, vähentävät myös ilmansaasteiden päästöjä, mutta esimerkiksi puun pienpoltto aiheuttaa pienhiukkaspäästöjä. Kun päästöt tapahtuvat matalalla ja lähellä suuria ihmiskeskittymiä, väestö altistuu suuremmille epäpuhtauksien pitoisuuksille kuin silloin, kun päästöt tulevat korkeista piipuista. Erityisesti on syytä rajoittaa liikenteen ei-pakokaasuperäisiä päästöjä (”katupöly”) kaupungeissa ja puun pienpolton päästöjä tiheästi asutuilla alueilla. Elinkaariarviointiin perustuva skenaarioiden ympäristövaikutusarviointi osoittaa, että polttoaineiden valmistuksen ja käytön yhteenlasketut vaikutukset pienenevät kaikissa tarkastelluissa vaikutusluokissa vuoteen 2005 verrattuna. Tämä johtuu pääasiassa kotimaan käytön vaikutusten vähenemisestä. Polttoaineiden valmistuksen vaikutukset ulkomailla lisääntyvät, mikä johtuu fossiilisten energialähteiden tuonnin kasvusta. Ympäristöanalyysin perusteella typen oksidien ja pienhiukkasten päästöjen rajoittaminen on keskeisin päästövähennystoimenpidealue hiilidioksidipäästöjen rajoittamisen jälkeen. Monet strategian linjaukset ja toimenpiteet pyrkivät viemään kehitystä kohti energiaa säästävää ja vähemmän luonnonvaroja kuluttavaa tuotantoa ja kulutusta, mutta kokonaiskulutuksena mitattuna muutos vuosien 2005 ja 2020 välillä on skenaarioissa verrattain pieni. Merkittävämpi muutos voi toteutua pitkällä aikavälillä, jos ilmasto- ja energiapolitiikka johdonmukaisesti kannustaa säästämään energiaa ja luonnonvaroja niin, että myös absoluuttinen kulutus pienenee. Aikaisempien ilmasto- ja energiastrategioiden toimenpiteiden seuranta osoittaa, että lukuisia erilaisia energiatehokkuutta edistäviä hankkeita on käynnistetty, mutta merkittäviä rakenteellisia muutoksia energiankulutuksessa ei ole vielä tapahtunut. Osana ilmastopolitiikkaa Suomi on kerännyt kokemuksia ns. Kioton mekanismien soveltamisesta. Tarkastelu osoittaa, että näiden mekanismien avulla voidaan edistää myös yleisiä kehityspoliittisia tavoitteita, mutta tämä edellyttää toiminnan aktiivista suuntaamista myös monenkeskisellä tasolla
    corecore