4 research outputs found

    Role of Melatonin in Directing Plant Physiology

    Get PDF
    Melatonin (MT), a naturally occurring compound, is found in various species worldwide. In 1958, it was first identified in the pineal gland of dairy cows. MT is an "old friend" but a "new compound" for plant biology. It brings experts and research minds from the broad field of plant sciences due to its considerable influence on plant systems. The MT production process in plants and animals is distinct, where it has been expressed explicitly in chloroplasts and mitochondria in plants. Tryptophan acts as the precursor for the formation of phyto-melatonin, along with intermediates including tryptamine, serotonin, N-acetyl serotonin, and 5-methoxy tryptamine. It plays a vital role in growth phases such as the seed germination and seedling growth of crop plants. MT significantly impacts the gas exchange, thereby improving physio-chemical functions in plant systems. During stress, the excessive generation and accumulation of reactive oxygen species (ROS) causes protein oxidation, lipid peroxidation, nucleic acid damage, and enzyme inhibition. Because it directly acts as an antioxidant compound, it awakens the plant antioxidant defense system during stress and reduces the production of ROS, which results in decreasing cellular oxidative damage. MT can enhance plant growth and development in response to various abiotic stresses such as drought, salinity, high temperature, flooding, and heavy metals by regulating the antioxidant mechanism of plants. However, these reactions differ significantly from crop to crop and are based on the level and kind of stress. The role of MT in the physiological functions of plants towards plant growth and development, tolerance towards various abiotic stresses, and approaches for enhancing the endogenous MT in plant systems are broadly reviewed and it is suggested that MT is a steering compound in directing major physiological functions of plants under the changing climate in future

    Drought Tolerance of Mungbean Is Improved by Foliar Spray of Nanoceria

    No full text
    In crops, drought stress reduces the photosynthetic rate and gamete function through oxidative damage. Earlier studies showed that nanoceria possesses an antioxidant property; however, the ability of nanoceria to alleviate drought-stress-stimulated oxidative damage in pulse crops has not been studied. Therefore, experiments were conducted to assess the impacts of nanoceria on drought-induced oxidative damage in mungbean [Vigna radiata (L.) Wilczek]. We hypothesize that foliar application of nanoceria under drought stress can scavenge the excess produced reactive oxygen species (ROS) due to its inherent properties which could result in increased photosynthesis and reproductive success of mungbean. Three experiments were conducted under well-watered and limited-moisture conditions. The traits associated with oxidative damage, photosynthesis, reproductive success, and yield were recorded. Results showed that for mungbean, the optimum concentration of nanoceria for foliar spray was 100 mg L−1. Field and pot culture experiments showed that foliar application of nanoceria under drought decreased the superoxide radical content (29%), hydrogen peroxide content (28%), and membrane damage (35%) over water spray. Nanoceria increased the photosynthetic rate (38%), pod-set percentage (16%), and seed weight m−2 (44%) in drought-stressed plants compared to control plants. The increased photosynthetic rate by nanoceria spray under drought stress is associated with lesser oxidative damage and stomatal limitation caused by nanoceria’s inherent ROS-scavenging ability. Hence, foliar application of nanoceria at the rate of 100 mg L−1 under drought stress could increase mungbean seed yield per plant through increased photosynthetic rate and pod-set percentage

    Role of Melatonin in Directing Plant Physiology

    No full text
    Melatonin (MT), a naturally occurring compound, is found in various species worldwide. In 1958, it was first identified in the pineal gland of dairy cows. MT is an “old friend” but a “new compound” for plant biology. It brings experts and research minds from the broad field of plant sciences due to its considerable influence on plant systems. The MT production process in plants and animals is distinct, where it has been expressed explicitly in chloroplasts and mitochondria in plants. Tryptophan acts as the precursor for the formation of phyto-melatonin, along with intermediates including tryptamine, serotonin, N-acetyl serotonin, and 5-methoxy tryptamine. It plays a vital role in growth phases such as the seed germination and seedling growth of crop plants. MT significantly impacts the gas exchange, thereby improving physio-chemical functions in plant systems. During stress, the excessive generation and accumulation of reactive oxygen species (ROS) causes protein oxidation, lipid peroxidation, nucleic acid damage, and enzyme inhibition. Because it directly acts as an antioxidant compound, it awakens the plant antioxidant defense system during stress and reduces the production of ROS, which results in decreasing cellular oxidative damage. MT can enhance plant growth and development in response to various abiotic stresses such as drought, salinity, high temperature, flooding, and heavy metals by regulating the antioxidant mechanism of plants. However, these reactions differ significantly from crop to crop and are based on the level and kind of stress. The role of MT in the physiological functions of plants towards plant growth and development, tolerance towards various abiotic stresses, and approaches for enhancing the endogenous MT in plant systems are broadly reviewed and it is suggested that MT is a steering compound in directing major physiological functions of plants under the changing climate in future

    Melatonin Decreases Negative Effects of Combined Drought and High Temperature Stresses through Enhanced Antioxidant Defense System in Tomato Leaves

    No full text
    In tomato (Lycopersicon esculentum L.), the effects of combined drought (D) and high temperature (HT) stress during the flowering stage had not been studied in detail. Therefore, this study was conducted with an objective of quantifying the effects of foliar spray of melatonin under individual and combined drought and HT stress. At flowering stage, D stress was imposed through withholding irrigation, while HT stress was imposed through exposing the plants to ambient temperature (AT) along with an increase of +5 °C. Under D + HT, plants were first subjected to drought followed by a + 5 °C increase in AT. The duration of individual or combined stress was ten days. At 80% available soil moisture, 100 ”M melatonin was sprayed on D, HT, or D + HT treated plants. Among the stresses, D + HT stress increased the thylakoid membrane damage and decreased the photosynthetic rate and fruit yield more than D or HT stress. Foliar spray of 100 ”M melatonin produced decreased thylakoid membrane damage [D: 31%, HT: 26%, and D + HT: 18%] and increased antioxidant enzyme, viz., superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase, activity over stress-control plants. The photosynthetic rate [D: 24%, HT: 22%, and D + HT: 19%] and fruit yield [D: 32%, HT: 23%, and D + HT: 16%] were increased over stress-control plants. Hence, it is evident that the increased photosynthetic rate and fruit yield in D + HT and 100 ”M melatonin-sprayed plants may be associated with an increased antioxidant defense system. Melatonin as a novel biostimulator has a great potential in scavenging free radicals through increased antioxidant activity, which shields the photosynthetic membrane from damage and therefore helps in stress mitigation
    corecore