380 research outputs found

    Effect of Exogenously Applied 24-Epibrassinolide and Brassinazole on Xylogenesis and Microdistribution of Cell Wall Polymers in Leucaena leucocephala (Lam) De Wit

    Get PDF
    Plant growth regulators play a key role in cell wall structure and chemistry of woody plants. Understanding of these regulatory signals is important in advanced research on wood quality improvement in trees. The present study is aimed to investigate the influence of exogenous application of 24-epibrassinolide (EBR) and brassinosteroid inhibitor, brassinazole (BRZ) on wood formation and spatial distribution of cell wall polymers in the xylem tissue of Leucaena leucocephala using light and immuno electron microscopy methods. Brassinazole caused a decrease in cambial activity, xylem differentiation, length and width of fibres, vessel element width and radial extent of xylem suggesting brassinosteroid inhibition has a concomitant impact on cell elongation, expansion and secondary wall deposition. Histochemical studies of 24-epibrassinolide treated plants showed an increase in syringyl lignin content in the xylem cell walls. Fluorescence microscopy and transmission electron microscopy studies revealed the inhomogenous pattern of lignin distribution in the cell corners and middle lamellae region of BRZ treated plants. Immunolocalization studies using LM10 and LM 11 antibodies have shown a drastic change in the micro-distribution pattern of less substituted and highly substituted xylans in the xylem fibres of plants treated with EBR and BRZ. In conclusion, present study demonstrates an important role of brassinosteroid in plant development through regulating xylogenesis and cell wall chemistry in higher plants

    An Improved Integrity-Based Hybrid Multi-User Data Access Control for Cloud Heterogeneous Supply Chain Databases

    Get PDF
    Cloud-based supply chain applications play a vital role in the multi-user data security framework for heterogeneous data types. The majority of the existing security models work effectively on small to medium-sized datasets with a homogenous data structure. In contrast, Supply Chain Management (SCM) systems in the real world utilize heterogeneous databases. The heterogeneous databases include a massive quantity of raw SCM data and a scanned image of a purchase quotation. In addition, as the size of the database grows, it becomes more challenging to provide data security on multi-user SCM databases. Multi-user datatypes are heterogeneous in structure, and it is complex to apply integrity and confidentiality models due to high computational time and resources. Traditional multi-user integrity algorithms are difficult to process heterogeneous datatypes due to computational time and variation in hash bit size. Conventional attribute-based encryption models such as "Key-policy attribute-based encryption" (KP-ABE), "Ciphertext-Policy Attribute-Based Encryption" (CP-ABE) etc., are used to provide strong data confidentiality on large textual data. Providing security for heterogeneous databases in a multi-user SCM system requires a significant computational runtime for these conventional models. An enhanced integrity-based multi-user access control security model is created for heterogeneous databases in the cloud infrastructure to address the problems with heterogeneous SCM databases. A non-linear integrity model is developed to provide strong integrity verification in the multi-user communication process. A multi-user based access control model is implemented by integrating the multi-user hash values in the encoding and decoding process. Practical results proved that the multi-user non-linear integrity-based multi-access control framework has better runtime and hash bit variation compared to the conventional models on large cloud-based SCM databases

    Cytotoxic Oleanane-Type Saponins from Albizia inundata

    Get PDF
    Bioassay-guided fractionation of a CH2Cl2−MeOH extract of the aerial parts of Albizia inundata resulted in the isolation of two new natural oleanane-type triterpene saponins {3-O-[α-l-arabinopyranosyl(1→6)]-2-acetamido-2-deoxy-β-d-glucopyranosyl oleanolic acid (1) and 3-O-[α-l-arabinopyranosyl(1→2)-α-l-arabinopyranosyl(1→6)]-2-acetamido-2-deoxy-β-d-glucopyranosyl acacic acid lactone (2)} along with seven known saponins {3-O-[α-l-arabinopyranosyl(1→6)]-2-acetamido-2-deoxy-β-d-glucopyranosyl echinocystic acid (3), 3-O-[β-d-xylopyranosyl (l→2)-α-l-arabinopyranosyl(l→6)]-2-acetamido-2-deoxy-β-d-glucopyranosyl acacic acid lactone (concinnoside D) (4), 3-O-[β-d-glucopyranosyl(l→2)]-β-d-glucopyranosyl oleanolic acid (5), 3-O-[α-l-arabinopyranosyl(1→2)-α-l-arabinopyranosyl(l→6)]-β-d-glucopyranosyl oleanolic acid (6), 3-O-[β-d-xylopyranosyl(1→2)-α-l-arabinopyranosyl(l→6)]-β-d-glucopyranosyl oleanolic acid (7), 3-O-[α-l-arabinopyranosyl(l→2)-α-l-arabinopyranosyl(1→6)-[β-d-glucopyranosyl(l→2)]-β-d-glucopyranoside echinocystic acid (8), and 3-O-[β-d-xylopyranosyl(l→2)-α-l-arabinopyranosyl(1→6)-[β-d-glucopyranosyl(l→2)]-β-d-glucopyranoside echinocystic acid (9)}. The structures of 1 and 2 were established on the basis of extensive 2D NMR (1H−1H COSY or DQF-COSY, HSQC, HMBC, TOCSY, and HSQC-TOCSY) spectroscopic, ESIMS, and chemical methods. Saponins 1, 3, 6, and 7 showed cytotoxicity against human head and neck squamous cells (JMAR, MDA1986) and melanoma cells (B16F10, SKMEL28) with IC50 values in the range 1.8−12.4 μM, using the MTS assay

    VEGF and TGF-β are required for the maintenance of the choroid plexus and ependyma

    Get PDF
    Although the role of vascular endothelial growth factor (VEGF) in developmental and pathological angiogenesis is well established, its function in the adult is less clear. Similarly, although transforming growth factor (TGF) β is involved in angiogenesis, presumably by mediating capillary (endothelial cell [EC]) stability, its involvement in quiescent vasculature is virtually uninvestigated. Given the neurological findings in patients treated with VEGF-neutralizing therapy (bevacizumab) and in patients with severe preeclampsia, which is mediated by soluble VEGF receptor 1/soluble Fms-like tyrosine kinase receptor 1 and soluble endoglin, a TGF-β signaling inhibitor, we investigated the roles of VEGF and TGF-β in choroid plexus (CP) integrity and function in adult mice. Receptors for VEGF and TGF-β were detected in adult CP, as well as on ependymal cells. Inhibition of VEGF led to decreased CP vascular perfusion, which was associated with fibrin deposition. Simultaneous blockade of VEGF and TGF-β resulted in the loss of fenestrae on CP vasculature and thickening of the otherwise attenuated capillary endothelium, as well as the disappearance of ependymal cell microvilli and the development of periventricular edema. These results provide compelling evidence that both VEGF and TGF-β are involved in the regulation of EC stability, ependymal cell function, and periventricular permeability

    Low-Molecular Weight Heparin Increases Circulating sFlt-1 Levels and Enhances Urinary Elimination

    Get PDF
    Rationale: Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1), an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo. Objective: We systematically determined serum and urine levels of angiogenic factors in preeclamptic women before and after administration of low molecular weight heparin and further characterized the interaction with heparin in biochemical studies. Methods and Results: Serum and urine samples were used to measure sFlt-1 levels before and after heparin administration. Serum levels of sFlt-1 increased by 25% after heparin administration in pregnant women. The magnitude of the increase in circulating sFlt-1 correlated with initial sFlt-1 serum levels. Urinary sFlt-1 levels were also elevated following heparin administration and levels of elimination were dependent on the underlying integrity of the glomerular filtration barrier. Biochemical binding studies employing cation exchange chromatography revealed that heparin bound sFlt-1 had decreased affinity to negatively charged surfaces when compared to sFlt-1 alone. Conclusion: Low molecular weight heparin administration increased circulating sFlt1 levels and enhanced renal elimination. We provide evidence that both effects may be due to heparin binding to sFlt1 and masking the positive charges on sFlt1 protein

    Low-Molecular Weight Heparin Increases Circulating sFlt-1 Levels and Enhances Urinary Elimination

    Get PDF
    Rationale: Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1), an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo. Objective: We systematically determined serum and urine levels of angiogenic factors in preeclamptic women before and after administration of low molecular weight heparin and further characterized the interaction with heparin in biochemical studies. Methods and Results: Serum and urine samples were used to measure sFlt-1 levels before and after heparin administration. Serum levels of sFlt-1 increased by 25% after heparin administration in pregnant women. The magnitude of the increase in circulating sFlt-1 correlated with initial sFlt-1 serum levels. Urinary sFlt-1 levels were also elevated following heparin administration and levels of elimination were dependent on the underlying integrity of the glomerular filtration barrier. Biochemical binding studies employing cation exchange chromatography revealed that heparin bound sFlt-1 had decreased affinity to negatively charged surfaces when compared to sFlt-1 alone. Conclusion: Low molecular weight heparin administration increased circulating sFlt1 levels and enhanced renal elimination. We provide evidence that both effects may be due to heparin binding to sFlt1 and masking the positive charges on sFlt1 protein

    Excess Circulating Angiopoietin-2 May Contribute to Pulmonary Vascular Leak in Sepsis in Humans

    Get PDF
    BACKGROUND: Acute respiratory distress syndrome (ARDS) is a devastating complication of numerous underlying conditions, most notably sepsis. Although pathologic vascular leak has been implicated in the pathogenesis of ARDS and sepsis-associated lung injury, the mechanisms promoting leak are incompletely understood. Angiopoietin-2 (Ang-2), a known antagonist of the endothelial Tie-2 receptor, was originally described as a naturally occurring disruptor of normal embryonic vascular development otherwise mediated by the Tie-2 agonist angiopoietin-1 (Ang-1). We hypothesized that Ang-2 contributes to endothelial barrier disruption in sepsis-associated lung injury, a condition involving the mature vasculature. METHODS AND FINDINGS: We describe complementary human, murine, and in vitro investigations that implicate Ang-2 as a mediator of this process. We show that circulating Ang-2 is significantly elevated in humans with sepsis who have impaired oxygenation. We then show that serum from these patients disrupts endothelial architecture. This effect of sepsis serum from humans correlates with measured Ang-2, abates with clinical improvement, and is reversed by Ang-1. Next, we found that endothelial barrier disruption can be provoked by Ang-2 alone. This signal is transduced through myosin light chain phosphorylation. Last, we show that excess systemic Ang-2 provokes pulmonary leak and congestion in otherwise healthy adult mice. CONCLUSIONS: Our results identify a critical role for Ang-2 in disrupting normal pulmonary endothelial function

    Root and Leaf Anatomy, Ion Accumulation, and Transcriptome Pattern under Salt Stress Conditions in Contrasting Genotypes of Sorghum bicolor

    Get PDF
    Roots from salt-susceptible ICSR-56 (SS) sorghum plants display metaxylem elements with thin cell walls and large diameter. On the other hand, roots with thick, lignified cell walls in the hypodermis and endodermis were noticed in salt-tolerant CSV-15 (ST) sorghum plants. The secondary wall thickness and number of lignified cells in the hypodermis have increased with the treatment of sodium chloride stress to the plants (STN). Lignin distribution in the secondary cell wall of sclerenchymatous cells beneath the lower epidermis was higher in ST leaves compared to the SS genotype. Casparian thickenings with homogenous lignin distribution were observed in STN roots, but inhomogeneous distribution was evident in SS seedlings treated with sodium chloride (SSN). Higher accumulation of K+ and lower Na+ levels were noticed in ST compared to the SS genotype. To identify the differentially expressed genes among SS and ST genotypes, transcriptomic analysis was carried out. Both the genotypes were exposed to 200 mM sodium chloride stress for 24 h and used for analysis. We obtained 70 and 162 differentially expressed genes (DEGs) exclusive to SS and SSN and 112 and 26 DEGs exclusive to ST and STN, respectively. Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis unlocked the changes in metabolic pathways in response to salt stress. qRT-PCR was performed to validate 20 DEGs in each SSN and STN sample, which confirms the transcriptomic results. These results surmise that anatomical changes and higher K+/Na+ ratios are essential for mitigating salt stress in sorghum apart from the genes that are differentially up- and downregulated in contrasting genotypes
    corecore