3,586 research outputs found

    Centrality, Rapidity and Transverse-Momentum Dependence of Cold Nuclear Matter Effects on J/Psi Production in d+Au, Cu+Cu and Au+Au Collisions at sqrt(s_NN)=200 GeV

    Full text link
    We have carried out a wide study of Cold Nuclear Matter (CNM) effects on J/Psi production in d+Au, Cu+Cu and Au+Au collisions at sqrt(s_NN)=200 GeV. We have studied the effects of three different gluon-shadowing parametrisations, using the usual simplified kinematics for which the momentum of the gluon recoiling against the J/Psi is neglected as well as an exact kinematics for a 2 -> 2 process, namely g+g -> J/psi+g as expected from LO pQCD. We have shown that the rapidity distribution of the nuclear modification factor R_dAu, and particularly its anti-shadowing peak, is systematically shifted toward larger rapidities in the 2 -> 2 kinematics, irrespective of which shadowing parametrisation is used. In turn, we have noted differences in the effective final-state nuclear absorption necessary to fit the PHENIX d+Au data. Taking advantage of our implementation of a 2 -> 2 kinematics, we have also computed the transverse momentum dependence of the latter nuclear modification factor, which cannot be predicted with the usual simplified kinematics. All the corresponding observables have been computed for Cu+Cu and Au+Au collisions and compared to the PHENIX and STAR data. Finally, we have extracted the effective nuclear absorption from the recent measurements of R_CP in d+Au by the PHENIX collaboration.Comment: 12 pages, 14 figures, LaTeX. Version to appear in Phys. Rev. C: a few typos corrected and one comment about the EPS08 nPDF parametrisation adde

    Extraction of the x-dependence of the non-perturbative QCD b-quark fragmentation distribution component

    Get PDF
    Using recent measurements of the b-quark fragmentation distribution obtained in e+e−→bbˉe^+e^- \to b \bar{b} events registered at the Z pole, the non-perturbative QCD component of the distribution has been extracted independently of any hadronic physics modelling. This distribution depends only on the way the perturbative QCD component has been defined. When the perturbative QCD component is taken from a parton shower Monte-Carlo, the non-perturbative QCD component is rather similar with those obtained from the Lund or Bowler models. When the perturbative QCD component is the result of an analytic NLL computation, the non-perturbative QCD component has to be extended in a non-physical region and thus cannot be described by any hadronic modelling. In the two examples used to characterize these two situations, which are studied at present, it happens that the extracted non-perturbative QCD distribution has the same shape, being simply translated to higher-x values in the second approach, illustrating the ability of the analytic perturbative QCD approach to account for softer gluon radiation than with a parton shower generator.Comment: 13 page

    The Distribution of Constituent Charm Quarks in the Hadron

    Full text link
    Using a statistical approach in the framework of non-covariant perturbation theory the distributions for light and charmed quarks in the hadron have been derived, taking into account the mass of the charmed quark. The parameters of the model have been extracted from the comparison with NA3 data on hadroproduction of J/psi particles. A reanalysis of the EMC data on charm production in muon-nucleon scattering has been performed. It has been found in comparison with the conventional source of charmed quarks from photon-gluon fusion, that the EMC data indicate the presence of an additional contribution from deep-inelastic scattering on charmed quarks at large x. The resulting admixture of the Fock states, containing charmed quarks in the decomposition of the proton wave function is of the order of 1%. The approach presented for the excitation of the Fock states with charmed quarks can also be applied to states with beauty quarks as well as to the hadronic component of the virtual photon (resolved photon component).Comment: 23 pages, 4 PostScript figures, Latex2e. In revised version in comparison with the original one all (?) mistypings have been corrected, one more thank has been added and the comparison of the pion and the proton J/psi production is described in more detai

    J/psi plus prompt-photon associated production in two-photon collisions at next-to-leading order

    Full text link
    We calculate the cross section of J/psi plus prompt-photon inclusive production in gamma gamma collisions at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics (NRQCD) focusing on direct photoproduction. Apart from direct J/psi production, we also include the feed-down from directly-produced chi_{cJ} and psi' mesons. We discuss the analytical calculation, in particular the treatment of the various types of singularities and the NRQCD operator renormalization, in some detail. We present theoretical predictions for the future e^+e^- linear collider TESLA, taking into account both brems- and beamstrahlung.Comment: 31 pages, 9 figure

    Analysis of Bose-Einstein correlations in e+e- -> W+W- events including final state interactions

    Get PDF
    Recently DELPHI Collaboration reported new data on Bose-Einstein correlations (BEC) measured in e+e- -> W^+W^- events. Apparently no enhancement has been observed. We have analyzed these data including final state interactions (FSI) of both Coulomb and strong (s-wave) origin and found that there is enhancement in BEC but it is overshadowed by the FSI which are extremely important for those events. We have found the following values for the size of the interaction range beta and the degree of coherence lambda: beta=0.87 +/- 0.31fm and lambda=1.19 +/- 0.48, respectively.Comment: 7pages, 4 figure

    The small x gluon and b\bar{b} production at the LHC

    Full text link
    We study open b\bar{b} production at large rapidity at the LHC in an attempt to pin down the gluon distribution at very low x. For the LHC energy of 7 TeV, at next-to-leading order (NLO), there is a large factorization scale uncertainty. We show that the uncertainty can be greatly reduced if events are selected in which the transverse momenta of the two B-mesons balance each other to some accuracy, that is |\vec p_{1T}+\vec p_{2T}| < k_0. This will fix the scale \mu_F \simeq k_0, and will allow the LHCb experiment, in particular, to study the x-behaviour of gluon distribution down to x ~ 10^{-5}, at rather low scales, \mu ~ 2 GeV. We evaluate the expected cross sections using, for illustrative purposes, various recent sets of Parton Distribution Functions.Comment: 13 pages, 5 figure

    Report of the Working Group on `W Mass and QCD' (Phenomenology Workshop on LEP2 Physics, Oxford, April 1997)

    Get PDF
    The W Mass and QCD Working Group discussed a wide variety of topics relating to present and future measurements of M(W) at LEP2, including QCD backgrounds to W+W- production. Particular attention was focused on experimental issues concerning the direct reconstruction and threshold mass measurements, and on theoretical and experimental issues concerning the four jet final state. This report summarises the main conclusions.Comment: 43 pages LaTeX and 15 encapsulated postscript figures. Uses epsfig and ioplppt macros. Full Proceedings to be published in Journal of Physics

    Physics of B_c mesons

    Get PDF
    In the framework of potential models for heavy quarkonium the mass spectrum for the system (bˉc\bar b c) is considered. Spin-dependent splittings, taking into account a change of a constant for effective coulomb interaction between the quarks, and widths of radiative transitions between the (bˉc\bar b c) levels are calculated. In the framework of QCD sum rules, masses of the lightest vector Bc∗B_c^* and pseudoscalar BcB_c states are estimated, scaling relation for leptonic constants of heavy quarkonia is derived, and the leptonic constant fBcf_{B_c} is evaluated. The BcB_c decays are considered in the framework of both the potential models and the QCD sum rules, where the significance of Coulomb-like corrections is shown. The relations, following from the approximate spin symmetry for the heavy quarks in the heavy quarkonium, are analysed for the form factors of the semileptonic weak exclusive decays of BcB_c. The BcB_c lifetime is evaluated with the account of the corrections to the spectator mechanism of the decay, because of the quark binding into the meson. The total and differential cross sections of the BcB_c production in different interactions are calculated. The analytic expressions for the fragmentational production cross sections of BcB_c are derived. The possibility of the practical BcB_c search in the current and future experiments at electron-positron and hadron colliders is analysed.Comment: 81 page, latex, ihep.sty is required and attached in the end of the file after \end{document}, figures are not availabl

    The leading particle effect from light quark fragmentation in charm hadroproduction

    Get PDF
    The asymmetry of D−D^- and D+D^+ meson production in π−N\pi^-N scattering observed by the E791 experiment is a typical phenomenon known as the leading particle effect in charm hadroproducton. We show that the phenomenon can be explained by the effect of light quark fragmentation into charmed hadrons (LQF). Meanwhile, the size of the LQF effect is estimated from data of the E791 experiment. A comparison is made with the estimate of the LQF effect from prompt like-sign dimuon rate in neutrino experiments. The influence of the LQF effect on the measurement of nucleon strange distribution asymmetry from charged current charm production processes is briefly discussed.Comment: 6 latex pages, 1 figure, to appear in EPJ
    • 

    corecore