33 research outputs found

    Is callose a barrier for lead ions entering Lemna minor L. root cells?

    Get PDF
    Plants have developed a range of strategies for resisting environmental stresses. One of the most common is the synthesis and deposition of callose, which functions as a barrier against stress factor penetration. The aim of our study was to examine whether callose forms an efficient barrier against Pb penetration in the roots of Lemna minor L. exposed to this metal. The obtained results showed that Pb induced callose synthesis in L. minor roots, but it was not deposited regularly in all tissues and cells. Callose occurred mainly in the protoderm and in the centre of the root tip (procambial central cylinder). Moreover, continuous callose bands, which could form an efficient barrier for Pb penetration, were formed only in the newly formed and anticlinal cell walls (CWs); while in other CWs, callose formed only small clusters or incomplete bands. Such an arrangement of callose within root CWs inefficiently protected the protoplast from Pb penetration. As a result, Pb was commonly present inside the root cells. In the light of the results, the barrier role of callose against metal ion penetration appears to be less obvious than previously believed. It was indicated that induction of callose synthesis is not enough for a successful blockade of the stress factor penetration. Furthermore, it would appear that the pattern of callose distribution has an important role in this defence strategy

    Electrocatalytic hydrogen redox chemistry on gold nanoparticles

    Get PDF
    Electrocatalytic proton reduction leading to the formation of adsorbed molecular hydrogen on gold nanoparticles of 1-3 and 14-16 nm diameter stabilized by 1-mercapto-undecane-11-tetra(ethyleneglycol) has been demonstrated by cyclic voltammetry using a hanging mercury drop electrode. The nanoparticles were adsorbed to the electrode from aqueous dispersion and formed robust surface layers transferrable to fresh base electrolyte solutions. Unique electrocatalytic proton redox chemistry was observed that has no comparable counterpart in the electrochemistry of bulk gold electrodes. Depending on size, the nanoparticles have a discrete number of electrocatalytically active sites for the two-electron/two-proton reduction process. The adsorbed hydrogen formed is oxidized with the reverse potential sweep. These findings represent a new example of qualitative different behavior of nanoparticles in comparison with the corresponding bulk material.Fil: Brust, Mathias. University of Liverpool; Reino UnidoFil: Gordillo, Gabriel Jorge. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y QuĂ­mica FĂ­sica; Argentin
    corecore