22 research outputs found

    GC-MS-based metabolomics analysis unravels the therapeutic potential of Neolamarckia cadamba fruit peel

    Get PDF
    Kadam (Neolamarckia cadamba (Roxb.) is an evergreen tropical tree widely grown in Asia, particularly in India. Neolamarckia cadamba commonly known as kadam, cadamba or burflower tree. The roots, leaves, barks, and fruits of N. cadamba possess medicinal properties and are commonly used in the pharmaceutical industry. Fruit peels are the main waste and may contain various biologically active compounds. However, no prior knowledge about the therapeutic compounds of the peel. The objective of the present study was to unveil therapeutic compounds from the peel by Gas Chromatography–Mass Spectrometry (GC-MS) based metabolomics analysis. Metabolites from the kadam fruit peel were isolated and derivatized using MSTFA, characterized by the GC-MS analysis. Raw spectral data were pre-processed, and peak identification was performed using SHIMADZU Postrun analyse software. The metabolites in N. cadamba fruit peel were identified by comparing the peaks with the mass spectral reference database NIST v20. The results showed that the peel of kadam fruit contains 149 metabolites, which were further categorized into 46 different metabolite classes, with 52 different metabolic pathways and 63 biological functions. The principal roles of the metabolites were identified by functional annotation and enrichment analysis. It revealed that metabolites were responsible for anti-inflammation, anti-oxidant, anti-microbial, and anti-cancer properties. In summary, the peel of kadam fruit also contains various therapeutic compounds like other cadamba parts (i.e., roots, leaves, barks, and fruits). Further, comparing the peel with other parts discloses the peel-specific metabolites. The results obtained in this study could be useful for the pharmaceutical industry

    GBS-based SNP map pinpoints the QTL associated with sorghum downy mildew resistance in maize (Zea mays L.)

    Get PDF
    Sorghum downy mildew (SDM), caused by the biotrophic fungi Peronosclerospora sorghi, threatens maize production worldwide, including India. To identify quantitative trait loci (QTL) associated with resistance to SDM, we used a recombinant inbred line (RIL) population derived from a cross between resistant inbred line UMI936 (w) and susceptible inbred line UMI79. The RIL population was phenotyped for SDM resistance in three environments [E1-field (Coimbatore), E2-greenhouse (Coimbatore), and E3-field (Mandya)] and also utilized to construct the genetic linkage map by genotyping by sequencing (GBS) approach. The map comprises 1516 SNP markers in 10 linkage groups (LGs) with a total length of 6924.7 cM and an average marker distance of 4.57 cM. The QTL analysis with the phenotype and marker data detected nine QTL on chromosome 1, 2, 3, 5, 6, and 7 across three environments. Of these, QTL namely qDMR1.2, qDMR3.1, qDMR5.1, and qDMR6.1 were notable due to their high phenotypic variance. qDMR3.1 from chromosome 3 was detected in more than one environment (E1 and E2), explaining the 10.3% and 13.1% phenotypic variance. Three QTL, qDMR1.2, qDMR5.1, and qDMR6.1 from chromosomes 1, 5, and 6 were identified in either E1 or E3, explaining 15.2%–18% phenotypic variance. Moreover, genome mining on three QTL (qDMR3.1, qDMR5.1, and qDMR6.1) reveals the putative candidate genes related to SDM resistance. The information generated in this study will be helpful for map-based cloning and marker-assisted selection in maize breeding programs

    Development of Novel Blackgram (Vigna mungo (L.) Hepper) Mutants and Deciphering Genotype × Environment Interaction for Yield-Related Traits of Mutants

    No full text
    Blackgram (Vigna mungo (L.) Hepper) yields are noticeably poor due to a shortage of improved varieties and an aggravated narrow genetic base. An attempt was made to isolate novel blackgram mutants by selecting for yield-related traits derived through gamma irradiation and testing the mutant genotype’s stability across the different environments. The irradiated blackgram populations M1-M5 were established in the background of cultivars ADT 3, Co 6, and TU 17-9. Desirable mutants were selected from M3 to M5 generations. It was observed in M2 and M3 that gamma rays showed higher mutagenic efficacy and generated good inherited variance for the yield-related traits. M4 established three divergent groups in each blackgram cultivar revealed by clustering analysis. The number of pods per plant, number of clusters per plant, and number of pods per cluster showed a strong direct association with single plant yield and could be considered as selection traits. G × E interactions were higher than the variation due to genotype for single plant yield. Limited environmental interaction was observed for the genotypes G24, G16, G36, G30, and G17, as revealed by AMMI, and the genotypes G18 and G29, as revealed by GGE. GGE biplot revealed the environment-specific genotypes G13 for E1 (Aduthurai), G7 for E2 (Kattuthottam), and G34 for E3 (Vamban) and also portrayed the highly discriminating (E3) and representative (E2) environments. Selected novel blackgram genotypes from this research are useful genetic stocks for genetic improvement and breeding

    The Credible Role of Curcumin in Oxidative Stress-Mediated Mitochondrial Dysfunction in Mammals

    No full text
    Oxidative stress and mitochondrial dysfunction are associated with the pathogenesis of several human diseases. The excessive generation of reactive oxygen species (ROS) and/or lack of adequate antioxidant defenses causes DNA mutations in mitochondria, damages the mitochondrial respiratory chain, and alters membrane permeability and mitochondrial defense mechanisms. All these alterations are linked to the development of numerous diseases. Curcumin, an active ingredient of turmeric plant rhizomes, exhibits numerous biological activities (i.e., antioxidant, anti-inflammatory, anticancer, and antimicrobial). In recent years, many researchers have shown evidence that curcumin has the ability to reduce the oxidative stress- and mitochondrial dysfunction-associated diseases. In this review, we discuss curcumin’s antioxidant mechanism and significance in oxidative stress reduction and suppression of mitochondrial dysfunction in mammals. We also discuss the research gaps and give our opinion on how curcumin research in mammals should proceed moving forward

    A Review of the Role of Curcumin in Metal Induced Toxicity

    No full text
    Metal toxicity poses a potential global threat to the environment and living beings. Their numerous agricultural, medical, industrial, domestic, and technological applications result in widespread distribution in the environment which raises concern on the potential effects of metals in terms of health hazards and environmental pollution. Chelation therapy has been the preferred medical treatment for metal poisoning. The chelating agent bounds metal ions to form complex cyclic structures known as ‘chelates’ to intensify their excretion from the body. The main disadvantage of synthetic chelators is that the chelation process removes vital nutrients along with toxic metals. Natural compounds are widely available, economical, and have minimal adverse effects compared to classical chelators. Herbal preparations can bind to the metal, reduce its absorption in the intestines, and facilitate excretion from the body. Curcumin, a bioactive substance in turmeric, is widely used as a dietary supplement. Most studies have shown that curcumin protects against metal-induced lipid peroxidation and mitigates adverse effects on the antioxidant system. This review article provides an analysis to show that curcumin imparts promising metal toxicity-ameliorative effects that are related to its intrinsic antioxidant activity

    Functional Analysis of A Soybean Ferredoxin-NADP Reductase (FNR) Gene in Response to Soybean Mosaic Virus

    No full text
    The Ferredoxin-NADP reductase (FNR) gene plays a significant role in NADPH production, carbon assimilation, antioxidation, and cross-talking between chloroplasts and mitochondria in plants. This study aims to know the functional response of the soybean FNR gene (GmFNR) during a soybean mosaic virus (SMV) infection. For this purpose, we developed the bean pod mottle virus (BPMV)-based gene construct (BPMV-GmFNR) and used it to silence the GmFNR gene in resistant and susceptible lines. The results showed that GmFNR expression decreased to 50% in the susceptible line, compared to 40% in the resistant line. The silencing of GmFNR reduces the photosynthetic capacity and CAT activity of both lines compared to their respective controls. In addition, the H2O2 content increased significantly in the susceptible line, whereas the resistant line did not exhibit any change. Further, an SMV infection in the silencing plants of the susceptible line resulted in serious morphological changes and increased the SMV NIa-protease transcript accumulation compared to its control plants. However, the same impact was not observed in the resistant line. The yeast two-hybrid system, BIFC assay, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed that the GmFNR was interacting with EF1A and coincided with the increased SMV accumulation. The results obtained in this study improve the understanding of the soybean FNR gene response during SMV infection and provide a novel insight into the SMV resistance mechanism

    Curcumin as a Potential Antioxidant in Stress Regulation of Terrestrial, Avian, and Aquatic Animals: A Review

    No full text
    Stress has brought about a variety of harmful impacts on different animals, leading to difficulties in the management of animal husbandry and aquaculture. Curcumin has been recognized as a potential component to ameliorate the adverse influence of animal stress induced by toxicity, inflammation, diseases, thermal effect, and so on. In detail, this compound is known to offer various outstanding functions, including antibacterial properties, antioxidant effects, immune response recovery, and behavioral restoration of animals under stress conditions. However, curcumin still has some limitations, owing to its low bioavailability. This review summarizes the latest updates on the regulatory effects of curcumin in terms of stress management in terrestrial, avian, and aquatic animals
    corecore