6 research outputs found

    Targeting Endothelial Connexin37 Reduces Angiogenesis and Decreases Tumor Growth

    No full text
    Connexin37 (Cx37) and Cx40 form intercellular channels between endothelial cells (EC), which contribute to the regulation of the functions of vessels. We previously documented the participation of both Cx in developmental angiogenesis and have further shown that loss of Cx40 decreases the growth of different tumors. Here, we report that loss of Cx37 reduces (1) the in vitro proliferation of primary human EC; (2) the vascularization of subcutaneously implanted matrigel plugs in Cx37−/− mice or in WT using matrigel plugs supplemented with a peptide targeting Cx37 channels; (3) tumor angiogenesis; and (4) the growth of TC-1 and B16 tumors, resulting in a longer mice survival. We further document that Cx37 and Cx40 function in a collaborative manner to promote tumor growth, inasmuch as the injection of a peptide targeting Cx40 into Cx37−/− mice decreased the growth of TC-1 tumors to a larger extent than after loss of Cx37. This loss did not alter vessel perfusion, mural cells coverage and tumor hypoxia compared to tumors grown in WT mice. The data show that Cx37 is relevant for the control of EC proliferation and growth in different tumor models, suggesting that it may be a target, alone or in combination with Cx40, in the development of anti-tumoral treatments

    PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE

    No full text
    T-cell migration across the blood-brain barrier is a crucial step in the pathogenesis of EAE, an animal model for MS. Live cell imaging studies demonstrated that P-selectin glycoprotein ligand-1 (PSGL-1) and its endothelial ligands E- and P-selectin mediate the initial rolling of T cells in brain vessels during EAE. As functional absence of PSGL-1 or E/P-selectins does not result in ameliorated EAE, we speculated that T-cell entry into the spinal cord is independent of PSGL-1 and E/P-selectin. Performing intravital microscopy, we observed the interaction of WT or PSGL-1(-/-) proteolipid protein-specific T cells in inflamed spinal cord microvessels of WT or E/P-selectin(-/-) SJL/J mice during EAE. T-cell rolling but not T-cell capture was completely abrogated in the absence of either PSGL-1 or E- and P-selectin, resulting in a significantly reduced number of T cells able to firmly adhere in the inflamed spinal cord microvessels, but did not lead to reduced T-cell invasion into the CNS parenchyma. Thus, PSGL-1 interaction with E/P-selectin is essential for T-cell rolling in inflamed spinal cord microvessels during EAE. Taken together with previous observations, our findings show that T-cell rolling is not required for successful T-cell entry into the CNS and initiation of EAE

    Novel HSAN1 mutation in serine palmitoyltransferase resides at a putative phosphorylation site that is involved in regulating substrate specificity

    Get PDF
    1-Deoxysphingolipids (1-deoxySL) are atypical sphingolipids that are formed by the enzyme serine palmitoyltransferase (SPT) due to a promiscuous use of L-alanine over its canonical substrate L-serine. Several mutations in SPT are associated with the hereditary sensory and autonomic neuropathy type I (HSAN1). The current hypothesis is that these mutations induce a permanent shift in the affinity from L-serine toward L-alanine which results in a pathologically increased 1-deoxySL formation in HSAN1 patients. Also, wild-type SPT forms 1-deoxySL under certain conditions, and elevated levels were found in individuals with the metabolic syndrome and diabetes. However, the molecular mechanisms which control the substrate shift of the wild-type enzyme are not understood. Here, we report a novel SPTLC2-S384F variant in two unrelated HSAN1 families. Affected patients showed elevated plasma 1-deoxySL levels and expression of the S384F mutant in HEK293 cells increased 1-deoxySL formation. Previously, S384 has been reported as one of the two (S384 and Y387) putative phosphorylation sites in SPTLC2. The phosphorylation of wild-type SPTLC2 was confirmed by isoelectric focusing. The impact of an S384 phosphorylation on SPT activity was tested by creating mutants mimicking either a constitutively phosphorylated (S384D, S384E) or non-phosphorylated (S384A, Y387F, Y387F+S384A) protein. The S384D but not the S384E variant was associated with increased 1-deoxySL formation. The other mutations had no influence on activity and substrate affinity. In summary, our data show that S384F is a novel mutation in HSAN1 and that the substrate specificity of wild-type SPT might by dynamically regulated by a phosphorylation at this position

    Targeting Endothelial Connexin37 Reduces Angiogenesis and Decreases Tumor Growth

    No full text
    Connexin37 (Cx37) and Cx40 form intercellular channels between endothelial cells (EC), which contribute to the regulation of the functions of vessels. We previously documented the participation of both Cx in developmental angiogenesis and have further shown that loss of Cx40 decreases the growth of different tumors. Here, we report that loss of Cx37 reduces (1) the in vitro proliferation of primary human EC; (2) the vascularization of subcutaneously implanted matrigel plugs in Cx37−/− mice or in WT using matrigel plugs supplemented with a peptide targeting Cx37 channels; (3) tumor angiogenesis; and (4) the growth of TC-1 and B16 tumors, resulting in a longer mice survival. We further document that Cx37 and Cx40 function in a collaborative manner to promote tumor growth, inasmuch as the injection of a peptide targeting Cx40 into Cx37−/− mice decreased the growth of TC-1 tumors to a larger extent than after loss of Cx37. This loss did not alter vessel perfusion, mural cells coverage and tumor hypoxia compared to tumors grown in WT mice. The data show that Cx37 is relevant for the control of EC proliferation and growth in different tumor models, suggesting that it may be a target, alone or in combination with Cx40, in the development of anti-tumoral treatments

    Novel HSAN1 Mutation in Serine Palmitoyltransferase Resides at a Putative Phosphorylation Site That Is Involved in Regulating Substrate Specificity

    No full text
    1-Deoxysphingolipids (1-deoxySL) are atypical sphingolipids that are formed by the enzyme serine palmitoyltransferase (SPT) due to a promiscuous use of l-alanine over its canonical substrate l-serine. Several mutations in SPT are associated with the hereditary sensory and autonomic neuropathy type I (HSAN1). The current hypothesis is that these mutations induce a permanent shift in the affinity from l-serine toward l-alanine which results in a pathologically increased 1-deoxySL formation in HSAN1 patients. Also, wild-type SPT forms 1-deoxySL under certain conditions, and elevated levels were found in individuals with the metabolic syndrome and diabetes. However, the molecular mechanisms which control the substrate shift of the wild-type enzyme are not understood. Here, we report a novel SPTLC2-S384F variant in two unrelated HSAN1 families. Affected patients showed elevated plasma 1-deoxySL levels and expression of the S384F mutant in HEK293 cells increased 1-deoxySL formation. Previously, S384 has been reported as one of the two (S384 and Y387) putative phosphorylation sites in SPTLC2. The phosphorylation of wild-type SPTLC2 was confirmed by isoelectric focusing. The impact of an S384 phosphorylation on SPT activity was tested by creating mutants mimicking either a constitutively phosphorylated (S384D, S384E) or non-phosphorylated (S384A, Y387F, Y387F+S384A) protein. The S384D but not the S384E variant was associated with increased 1-deoxySL formation. The other mutations had no influence on activity and substrate affinity. In summary, our data show that S384F is a novel mutation in HSAN1 and that the substrate specificity of wild-type SPT might by dynamically regulated by a phosphorylation at this position
    corecore