153 research outputs found

    Control Molecule-based Transport for Future Molecular Devices

    No full text
    In this review, possibilities to modify intentionally the electronic transport properties of metal/molecule/metal devices (MMM devices) are discussed. Here especially the influence of the metal work function, the metal-molecule interface, the molecule dipole and different tunneling mechanisms are considered. A route to evaluate the effective surface work function of metal-molecule systems is given and, based on experimental results, an exemplary estimation is performed. The electron transport across different metal-molecule interfaces is characterized by relating transmission coefficients extracted from experimentally derived molecular conductances, decay constants or tunneling barrier heights. Based on the reported results the tunneling decay constant can be assumed to be suitable to characterize intrinsic molecular electron transport properties, while the nature of the metal-molecule contacts is properly described by the transmission coefficient. A clear gradation of transmission efficiencies of metal-anchoring group combinations can be given

    A new phase of the c(4x2) superstructure of alkanethiols grown by vapour phase deposition on gold

    Get PDF
    A self-assembled monolayer of dodecanethiol is grown onto (111) oriented gold by vacuum phase deposition and studied by ultrahigh vacuum scanning tunneling microscopy (STM). The films consist of domains that exhibit the c(4 x 2) over-structure of the hexagonal (square root of 3 x square root of 3)R30 of alkanethiols on gold. The domain size is only limited by the terrace size of the underlying gold. By higher resolution scans a new phase of the c(4 x 2) structure consisting of four inequivalent molecules that display different heights in the STM images is discovered
    • …
    corecore