12 research outputs found

    454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An essential driving component in the co-evolution of plants and insects is the ability to produce and handle bioactive compounds. Plants produce bioactive natural products for defense, but some insects detoxify and/or sequester the compounds, opening up for new niches with fewer competitors. To study the molecular mechanism behind the co-adaption in plant-insect interactions, we have investigated the interactions between <it>Lotus corniculatus </it>and <it>Zygaena filipendulae</it>. They both contain cyanogenic glucosides which liberate toxic hydrogen cyanide upon breakdown. Moths belonging to the <it>Zygaena </it>family are the only insects known, able to carry out both <it>de novo </it>biosynthesis and sequestration of the same cyanogenic glucosides as those from their feed plants. The biosynthetic pathway for cyanogenic glucoside biosynthesis in <it>Z. filipendulae </it>proceeds using the same intermediates as in the well known pathway from plants, but none of the enzymes responsible have been identified. A genomics strategy founded on 454 pyrosequencing of the <it>Z. filipendulae </it>transcriptome was undertaken to identify some of these enzymes in <it>Z. filipendulae</it>.</p> <p>Results</p> <p>Comparisons of the <it>Z. filipendulae </it>transcriptome with the sequenced genomes of <it>Bombyx mori</it>, <it>Drosophila melanogaster</it>, <it>Tribolium castaneum</it>, <it>Apis mellifera </it>and <it>Anopheles gambiae </it>indicate a high coverage of the <it>Z. filipendulae </it>transcriptome. 11% of the <it>Z. filipendulae </it>transcriptome sequences were assigned to Gene Ontology categories. Candidate genes for enzymes functioning in the biosynthesis of cyanogenic glucosides (cytochrome P450 and family 1 glycosyltransferases) were identified based on sequence length, number of copies and presence/absence of close homologs in <it>D. melanogaster</it>, <it>B. mori </it>and the cyanogenic butterfly <it>Heliconius</it>. Examination of biased codon usage, GC content and selection on gene candidates support the notion of cyanogenesis as an "old" trait within Ditrysia, as well as its origins being convergent between plants and insects.</p> <p>Conclusion</p> <p>Pyrosequencing is an attractive approach to gain access to genes in the biosynthesis of bio-active natural products from insects and other organisms, for which the genome sequence is not known. Based on analysis of the <it>Z. filipendulae </it>transcriptome, promising gene candidates for biosynthesis of cyanogenic glucosides was identified, and the suitability of <it>Z. filipendulae </it>as a model system for cyanogenesis in insects is evident.</p

    Computational analysis of pig ESTs

    No full text

    A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging

    Get PDF
    The inherent complex and pleiotropic phenotype of mitochondrial diseases poses a significant diagnostic challenge for clinicians as well as an analytical barrier for scientists. To overcome these obstacles we compiled a novel database, www.mitodb.com, containing the clinical features of primary mitochondrial diseases. Based on this we developed a number of qualitative and quantitative measures, enabling us to determine whether a disorder can be characterized as mitochondrial. These included a clustering algorithm, a disease network, a mitochondrial barcode and two scoring algorithms. Using these tools we detected mitochondrial involvement in a number of diseases not previously recorded as mitochondrial. As a proof of principle Cockayne syndrome, ataxia with oculomotor apraxia 1 (AOA1), spinocerebellar ataxia with axonal neuropathy 1 (SCAN1) and ataxia-telangiectasia have recently been shown to have mitochondrial dysfunction and those diseases showed strong association with mitochondrial disorders. We next evaluated mitochondrial involvement in aging and detected two distinct categories of accelerated aging disorders, one of them being associated with mitochondrial dysfunction. Normal aging seemed to associate stronger with the mitochondrial diseases than the non-mitochondrial partially supporting a mitochondrial theory of aging

    EST analysis on pig mitochondria reveal novel expression differences between developmental and adult tissues-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "EST analysis on pig mitochondria reveal novel expression differences between developmental and adult tissues"</p><p>http://www.biomedcentral.com/1471-2164/8/367</p><p>BMC Genomics 2007;8():367-367.</p><p>Published online 11 Oct 2007</p><p>PMCID:PMC2194790.</p><p></p> their developmental stage are marked by colored bullets

    Validation of genome-wide intervertebral disk calcification associations in Dachshund and further investigation of the chromosome 12 susceptibility locus

    Get PDF
    Herniation of the intervertebral disk is a common cause of neurological dysfunction in the dog, particularly in the Dachshund. Using the Illumina CanineHD BeadChip, we have previously identified a major locus on canine chromosome 12 nucleotide positions 36,750,205–38,524,449 that strongly associates with intervertebral disk calcification in Danish wire-haired Dachshunds. In this study, targeted resequencing identified two synonymous variants in MB21D1 and one in the 5′-untranslated region of KCNQ5 that associates with intervertebral disk calcification in an independent sample of wire-haired Dachshunds. Haploview identified seven linkage disequilibrium blocks across the disease-associated region. The effect of haplotype windows on disk calcification shows that all haplotype windows are significantly associated with disk calcification. However, our predictions imply that the causal variant(s) are most likely to be found between nucleotide 36,750,205–37,494,845 as this region explains the highest proportion of variance in the dataset. Finally, we develop a risk prediction model for wire-haired Dachshunds. We validated the association of the chromosome 12 locus with disk calcification in an independent sample of wire-haired Dachshunds and identify potential risk variants. Additionally, we estimated haplotype effects and set up a model for prediction of disk calcifications in wire-haired Dachshunds based on genotype data. This genetic prediction model may prove useful in selection of breeding animals in future breeding programs

    Sequence assembly

    No full text
    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html
    corecore