59 research outputs found

    Deficiency of Antigen Presenting Cell Invariant Chain Reduces Atherosclerosis in Mice

    Get PDF
    August 25, 2010Background: Adaptive immunity and innate immunity play important roles in atherogenesis. Invariant chain (CD74) mediates antigen-presenting cell antigen presentation and T-cell activation. This study tested the hypothesis that CD74-deficient mice have reduced numbers of active T cells and resist atherogenesis. Methods and Results: In low-density lipoprotein receptor–deficient (Ldlr[superscript −/−]) mice, CD74 deficiency (Ldlr[superscript −/−]Cd74[superscript −/−]) significantly reduced atherosclerosis and CD25+-activated T cells in the atheromata. Although Ldlr[superscript −/−]Cd74[superscript −/−] mice had decreased levels of plasma immunoglobulin (Ig) G1, IgG2b, and IgG2c against malondialdehyde-modified LDL (MDA-LDL), presumably as a result of impaired antigen-presenting cell function, Ldlr[superscript −/−]Cd74[superscript −/−] mice showed higher levels of anti–MDA-LDL IgM and IgG3. After immunization with MDA-LDL, Ldlr[superscript −/−]Cd74[superscript −/−] mice had lower levels of all anti–MDA-LDL Ig isotypes compared with Ldlr[superscript −/−] mice. As anticipated, only Ldlr[superscript −/−] splenocytes responded to in vitro stimulation with MDA-LDL, producing Th1/Th2 cytokines. Heat shock protein-65 immunization enhanced atherogenesis in Ldlr[superscript −/−] mice, but Ldlr[superscript −/−] Cd74[superscript −/−] mice remained protected. Compared with Ldlr[superscript −/−] mice, Ldlr[superscript −/−]Cd74[superscript −/−] mice had higher anti–MDA-LDL autoantibody titers, fewer lesion CD25+-activated T cells, impaired release of Th1/Th2 cytokines from antigen-presenting cells after heat shock protein-65 stimulation, and reduced levels of all plasma anti–heat shock protein-65 Ig isotypes. Cytofluorimetry of splenocytes and peritoneal cavity cells of MDA-LDL– or heat shock protein-65–immunized mice showed increased percentages of autoantibody-producing marginal zone B and B-1 cells in Ldlr[superscript −/−]Cd74[superscript −/−] mice compared with Ldlr[superscript −/−] mice. Conclusions: Invariant chain deficiency in Ldlr[superscript −/−] mice reduced atherosclerosis. This finding was associated with an impaired adaptive immune response to disease-specific antigens. Concomitantly, an unexpected increase in the number of innate-like peripheral B-1 cell populations occurred, resulting in increased IgM/IgG3 titers to the oxidation-specific epitopes

    Increased Plasma IgE Accelerate Atherosclerosis in Secreted IgM Deficiency.

    Get PDF
    RATIONALE: Deficiency of secreted IgM (sIgM-/-) accelerates atherosclerosis in Ldlr-/-mice. Several atheroprotective effects of increased levels of IgM antibodies have been suggested, including preventing inflammation induced by oxidized low-density lipoprotein and promoting apoptotic cell clearance. However, the mechanisms by which the lack of sIgM promotes lesion formation remain unknown. OBJECTIVE: To identify the mechanisms by which sIgM deficiency accelerates atherosclerosis in mice. METHODS AND RESULTS: We here show that both sIgM-/- and Ldlr-/-sIgM-/- mice develop increased plasma IgE titers because of impaired generation of B cells expressing the low-affinity IgE receptor CD23, which mediates the clearance of IgE antibodies. We further report that Ldlr-/-sIgM-/- mice exhibit increased numbers of activated mast cells and neutrophils in the perivascular area of atherosclerotic plaques. Treatment with an anti-IgE-neutralizing antibody fully reversed vascular inflammation and accelerated atherosclerotic lesion formation in cholesterol-fed Ldlr-/-sIgM-/- mice. CONCLUSIONS: Thus, our data identify a previously unsuspected mechanism by which sIgM deficiency aggravates atherosclerosis

    Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Osteoarthritis is the most common form of arthritis in adults, characterised by chronic pain and loss of mobility. Osteoarthritis most frequently occurs after age 40 years and prevalence increases steeply with age. WHO has designated 2021–30 the decade of healthy ageing, which highlights the need to address diseases such as osteoarthritis, which strongly affect functional ability and quality of life. Osteoarthritis can coexist with, and negatively effect, other chronic conditions. Here we estimate the burden of hand, hip, knee, and other sites of osteoarthritis across geographies, age, sex, and time, with forecasts of prevalence to 2050. Methods In this systematic analysis for the Global Burden of Disease Study, osteoarthritis prevalence in 204 countries and territories from 1990 to 2020 was estimated using data from population-based surveys from 26 countries for knee osteoarthritis, 23 countries for hip osteoarthritis, 42 countries for hand osteoarthritis, and US insurance claims for all of the osteoarthritis sites, including the other types of osteoarthritis category. The reference case definition was symptomatic, radiographically confirmed osteoarthritis. Studies using alternative definitions from the reference case definition (for example self-reported osteoarthritis) were adjusted to reference using regression models. Osteoarthritis severity distribution was obtained from a pooled meta-analysis of sources using the Western Ontario and McMaster Universities Arthritis Index. Final prevalence estimates were multiplied by disability weights to calculate years lived with disability (YLDs). Prevalence was forecast to 2050 using a mixed-effects model. Findings Globally, 595 million (95% uncertainty interval 535–656) people had osteoarthritis in 2020, equal to 7·6% (95% UI 6·8–8·4) of the global population, and an increase of 132·2% (130·3–134·1) in total cases since 1990. Compared with 2020, cases of osteoarthritis are projected to increase 74·9% (59·4–89·9) for knee, 48·6% (35·9–67·1) for hand, 78·6% (57·7–105·3) for hip, and 95·1% (68·1–135·0) for other types of osteoarthritis by 2050. The global age-standardised rate of YLDs for total osteoarthritis was 255·0 YLDs (119·7–557·2) per 100 000 in 2020, a 9·5% (8·6–10·1) increase from 1990 (233·0 YLDs per 100 000, 109·3–510·8). For adults aged 70 years and older, osteoarthritis was the seventh ranked cause of YLDs. Age-standardised prevalence in 2020 was more than 5·5% in all world regions, ranging from 5677·4 (5029·8–6318·1) per 100 000 in southeast Asia to 8632·7 (7852·0–9469·1) per 100 000 in high-income Asia Pacific. Knee was the most common site for osteoarthritis. High BMI contributed to 20·4% (95% UI –1·7 to 36·6) of osteoarthritis. Potentially modifiable risk factors for osteoarthritis such as recreational injury prevention and occupational hazards have not yet been explored in GBD modelling. Interpretation Age-standardised YLDs attributable to osteoarthritis are continuing to rise and will lead to substantial increases in case numbers because of population growth and ageing, and because there is no effective cure for osteoarthritis. The demand on health systems for care of patients with osteoarthritis, including joint replacements, which are highly effective for late stage osteoarthritis in hips and knees, will rise in all regions, but might be out of reach and lead to further health inequity for individuals and countries unable to afford them. Much more can and should be done to prevent people getting to that late stage

    Determination of primaty and volatile and non-volatile secondary lipid oxidation products

    No full text
    • …
    corecore