10 research outputs found

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Effect of the synthetic immunomodulator, Linomide, on experimental models of thyroiditis

    No full text
    The drug Linomide is an immunomodulator showing marked down-regulation of several experimental autoimmune diseases. In this study, its effect on three different experimental models of thyroid disease and on spontaneous infiltration of salivary glands (sialoadenitis), was investigated. Although very effective at preventing thyroid infiltrates in mice immunized with mouse thyroglobulin and complete Freund’s adjuvant and in spontaneous models of thyroiditis and sialoadenitis, it completely failed to modify experimental autoimmune thyroiditis (EAT) induced in mice immunized with mouse thyroglobulin and lipopolysaccharide. There was no significant shift in the observed isotypes of anti-mouse thyroglobulin antibodies and only anti-mouse thyroglobulin antibodies in the spontaneous model were completely down-modulated by the drug. One surprising fact to emerge was that Linomide-treated donor mice, although protected from thyroid lesions themselves, were still able to transfer EAT showing that they must have been effectively primed while being treated with Linomide. It is possible that the drug down modulated EAT by interfering with the trafficking of primed effector cells
    corecore