8 research outputs found
Catching Image Retrieval Generalization
The concepts of overfitting and generalization are vital for evaluating
machine learning models. In this work, we show that the popular Recall@K metric
depends on the number of classes in the dataset, which limits its ability to
estimate generalization. To fix this issue, we propose a new metric, which
measures retrieval performance, and, unlike Recall@K, estimates generalization.
We apply the proposed metric to popular image retrieval methods and provide new
insights about deep metric learning generalization.Comment: 4 pages, 3 figures, 2 table
Diversifying Deep Ensembles: A Saliency Map Approach for Enhanced OOD Detection, Calibration, and Accuracy
Deep ensembles achieved state-of-the-art results in classification and
out-of-distribution (OOD) detection; however, their effectiveness remains
limited due to the homogeneity of learned patterns within the ensemble. To
overcome this challenge, our study introduces a novel approach that promotes
diversity among ensemble members by leveraging saliency maps. By incorporating
saliency map diversification, our method outperforms conventional ensemble
techniques in multiple classification and OOD detection tasks, while also
improving calibration. Experiments on well-established OpenOOD benchmarks
highlight the potential of our method in practical applications
Deep Image Retrieval is not Robust to Label Noise
Large-scale datasets are essential for the success of deep learning in image
retrieval. However, manual assessment errors and semi-supervised annotation
techniques can lead to label noise even in popular datasets. As previous works
primarily studied annotation quality in image classification tasks, it is still
unclear how label noise affects deep learning approaches to image retrieval. In
this work, we show that image retrieval methods are less robust to label noise
than image classification ones. Furthermore, we, for the first time,
investigate different types of label noise specific to image retrieval tasks
and study their effect on model performance
Method of Forming Various Configurations of Telecommunication System Using Moving Target Defense
The purpose of this paper is to improve the effectiveness of the Moving Target Defense (MTD)-based protection method, which reduces the problem of using traditional network protection tools due to the static nature of network services and configurations. Options for solving the problems of choosing an adequate time interval for activating the technology of MTD and its application in networks are given. A new approach is proposed, which consists in creating a set of system configurations and changing it when an attack is detected and determined. The design implementation was tested on a network model using software defined networks (SDN). The advantages of the proposed method are highlighted, among which the most significant are: simple operation scheme, ability to deploy the system without the use of software-defined networks and absence of violations of security policies within the system
Characteristics of inductive coaxial copper vapour lasers
We present new results on numerical investigation of characteristics of pulse-periodic inductive copper vapour lasers. In these lasers pump pulses are trains of high-frequency (~ 30 MHz) current oscillations repeated at a frequency of 2-17 kHz. An inductive laser with an annular working volume of 1.7 l was considered and its possible output parameters were studied. We analyze specific features of working medium excitation in an HF-discharge; diversity of the obtained laser pulse shapes and possible applications are discussed as well
The Correlation of Ten Immune Checkpoint Gene Expressions and Their Association with Gastric Cancer Development
In the immunotherapy based on immune checkpoint inhibition (IC), additional ICs are being studied to increase its effectiveness. An almost unstudied feature is the possible co-expression of ICs, which can determine the therapeutic efficacy of their inhibition. For the selection of promising ICs, information on the association of their expression with cancer development may be essential. We have obtained data on the expression correlation of ADAM17, PVR, TDO2, CD274, CD276, CEACAM1, IDO1, LGALS3, LGALS9, and HHLA2 genes in gastric cancer (GC). All but one, TDO2, have other IC genes with co-expression at some stage. At the metastatic stage, the expression of the IDO1 does not correlate with any other gene. The correlations are positive, but the expressions of the CD276 and CEACAM1 genes are negatively correlated. The expression of TDO2 and LGALS3 is associated with GC metastasis. The expression of TDO2 four-fold higher in metastatic tumors than in non-metastatic tumors, but LGALS3 was two-fold lower. The differentiation is associated with IDO1. The revealed features of TDO2, with a significant increase in expression at the metastatic stage and the absence of other IC genes with correlated expression indicates that the prospect of inhibiting TDO2 in metastatic GC. IDO1 may be considered for inhibition in low-differentiated tumors
The role of regulatory CD4+CD25+high T-lymphocytes and their functional activity in the development of type 1 diabetes mellitus
Type 1 diabetes mellitus (DM1) is associated with compromised (defective) immunologic tolerance to autoantigens and selective destruction of pancreatic B-cells by CD4+ (effector) and CD8 (cytotoxic) lymphocytes. The mechanisms of autotolerance involve CD4+CD25+high T-regulatory cells (Treg) whose suppressor activity depends on the expression of the FoxP3 gene. Aim. Detection of quantitative and functional alterations at the level of regulation of immunity in subjects at risk of DM1 and patients with different duration of DM1. Materials and methods. 116 patients (67 men and 49 women) with different duration of DM1. The risk group was comprised of 33 subjects (10 men and 23 women), control group included 16 subjects. In all cases, HLA genotyping was performed, autoantibodies to GDC, insulin and tyrosine phosphatase, islet cell antigens were determined, subpopulation composition of CD3+, CD4+, CD8+, CD38+, HLA DR+, CD25+, CD4+25+ lymphocytes and their functional activities (FoxP3 gene expression) studied, C-peptie and HbA1c levels measured. Results. A tendency toward a rise in Cd25+ and CD4+25+ T-lymphocytes and a decrease in FoxP3 expression was documented in the risk group compared with control (p0.05) but their functional activity was lower (
Aberrant Methylation of 20 miRNA Genes Specifically Involved in Various Steps of Ovarian Carcinoma Spread: From Primary Tumors to Peritoneal Macroscopic Metastases
Our work aimed to differentiate 20 aberrantly methylated miRNA genes that participate at different stages of development and metastasis of ovarian carcinoma (OvCa) using methylation-specific qPCR in a representative set of clinical samples: 102 primary tumors without and with metastases (to lymph nodes, peritoneum, or distant organs) and 30 peritoneal macroscopic metastases (PMM). Thirteen miRNA genes (MIR107, MIR124-2, MIR124-3, MIR125B-1, MIR127, MIR129-2, MIR130B, MIR132, MIR193A, MIR339, MIR34B/C, MIR9-1, and MIR9-3) were hypermethylated already at the early stages of OvCa, while hypermethylation of MIR1258, MIR137, MIR203A, and MIR375 was pronounced in metastatic tumors, and MIR148A showed high methylation levels specifically in PMM. We confirmed the significant relationship between methylation and expression levels for 11 out of 12 miRNAs analyzed by qRT-PCR. Moreover, expression levels of six miRNAs were significantly decreased in metastatic tumors in comparison with nonmetastatic ones, and downregulation of miR-203a-3p was the most significant. We revealed an inverse relationship between expression levels of miR-203a-3p and those of ZEB1 and ZEB2 genes, which are EMT drivers. We also identified three miRNA genes (MIR148A, MIR9-1, and MIR193A) that likely regulate EMT–MET reversion in the colonization of PMM. According to the Kaplan–Meier analysis, hypermethylation of several examined miRNA genes was associated with poorer overall survival of OvCa patients, and high methylation levels of MIR130B and MIR9-1 were related to the greatest relative risk of death