584 research outputs found

    Tubular initial conditions and ridge formation

    Get PDF
    The 2D azimuth & rapidity structure of the two-particle correlations in relativistic A+A collisions is altered significantly by the presence of sharp inhomogeneities in superdense matter formed in such processes. The causality constraints enforce one to associate the long-range longitudinal correlations observed in a narrow angular interval, the so-called (soft) ridge, with peculiarities of the initial conditions of collision process. This study's objective is to analyze whether multiform initial tubular structures, undergoing the subsequent hydrodynamic evolution and gradual decoupling, can form the soft ridges. Motivated by the flux-tube scenarios, the initial energy density distribution contains the different numbers of high density tube-like boost-invariant inclusions that form a bumpy structure in the transverse plane. The influence of various structures of such initial conditions in the most central A+A events on the collective evolution of matter, resulting spectra, angular particle correlations and v_n-coefficients is studied in the framework of the HydroKinetic Model (HKM).Comment: 18 pages, 6 figures, the paper to be published in Advances of High Energy Physics (2013, in press

    Surface roughening during low temperature Si(100) epitaxy

    Full text link
    Reflection high energy electron diffraction (RHEED) was used to investigate surface roughening during low temperature Si(100) homoepitaxy. The use of RHEED allowed in situ real-time collection of structural information from the growth surface. RHEED patterns were analyzed using a simple kinematic diffraction model which related average surface roughness and average in-plane coherence lengths to the lengths and widths of individual RHEED diffraction features, respectively. These RHEED analyses were quantified by calibrating against cross-section transmission electron microscopy (TEM) analyses of surface roughening. Both the RHEED and TEM analyses revealed similar scaling of surface roughness with deposited thickness, with RHEED analyses resulting in roughness values a factor of ∼2 times lower than those obtained from TEM analyses. RHEED was then used to analyze surface roughening during Si(100) homoepitaxial growth in a range of temperatures, 200–275 °C. Initially, surface roughness increased linearly with deposited thickness at a roughening rate that decreased with increasing growth temperature. At each growth temperature, near the crystalline/amorphous Si phase transition, the rate of surface roughening decreased. This decrease coincided with the formation of facets and twins along Si{111} planes. Surface roughness eventually saturated at a value which followed an Arrhenius relation with temperature Eact ∼ 0.31±0.1Eact∼0.31±0.1 eV. This activation energy agrees well with the activation energy for the crystalline/amorphous Si phase transition, Eact ∼ 0.35Eact∼0.35 eV, and suggests that limited thickness epitaxy is characterized by this saturation roughness. Once the saturation roughness was reached, no significant changes in surface roughness were detected. In addition, the decay of average in-plane coherence lengths was also temperature dependent. Values of average coherence lengths, at the crystalline/amorphous Si phase transition, also increased with growth temperature. All of these data are consistent with a model that links surface roughening to the formation of critically sized Si{100} facets and the eventual breakdown in crystalline growth. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70948/2/JAPIAU-82-3-1157-1.pd

    Hydrokinetic predictions for femtoscopy scales in A+A collisions in the light of recent ALICE LHC results

    Full text link
    A study of energy behavior of the pion spectra and interferometry scales is carried out for the top SPS, RHIC and for LHC energies within the hydrokinetic approach. The main mechanisms that lead to the paradoxical, at first sight, dependence of the interferometry scales with an energy growth, in particular, a decrease Rout/RsideR_{out}/R_{side} ratio, are exposed. The hydrokinetic predictions for the HBT radii at LHC energies are compared with the recent results of the ALICE experiment.Comment: Based on the talks given at the Sixth Workshop on Particle Correlations and Femtoscopy, BITP, Kiev, September 14 - 18, 2010 and GSI/EMMI Seminar, January 14, 201

    New solutions of relativistic wave equations in magnetic fields and longitudinal fields

    Get PDF
    We demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. This arbitrariness is connected to the existence of a transformation, which reduces effectively the number of variables in the initial equations. Then we use the corresponding representations to construct new sets of exact solutions, which may have a physical interest. Namely, we present new sets of stationary and nonstationary solutions in magnetic field and in some superpositions of electric and magnetic fields.Comment: 25 pages, LaTex fil

    Evidence for Hydrodynamic Evolution in Proton-Proton Scattering at LHC Energies

    Full text link
    In pppp scattering at LHC energies, large numbers of elementary scatterings will contribute significantly, and the corresponding high multiplicity events will be of particular interest. Elementary scatterings are parton ladders, identified with color flux-tubes. In high multiplicity events, many of these flux tubes are produced in the same space region, creating high energy densities. We argue that there are good reasons to employ the successful procedure used for heavy ion collisions: matter is assumed to thermalizes quickly, such that the energy from the flux-tubes can be taken as initial condition for a hydrodynamic expansion. This scenario gets spectacular support from very recent results on Bose-Einstein correlations in pppp scattering at 900 GeV at LHC.Comment: 11 pages, 20 figure

    Equivariant pretheories and invariants of torsors

    Full text link
    In the present paper we introduce and study the notion of an equivariant pretheory: basic examples include equivariant Chow groups, equivariant K-theory and equivariant algebraic cobordism. To extend this set of examples we define an equivariant (co)homology theory with coefficients in a Rost cycle module and provide a version of Merkurjev's (equivariant K-theory) spectral sequence for such a theory. As an application we generalize the theorem of Karpenko-Merkurjev on G-torsors and rational cycles; to every G-torsor E and a G-equivariant pretheory we associate a graded ring which serves as an invariant of E. In the case of Chow groups this ring encodes the information concerning the motivic J-invariant of E and in the case of Grothendieck's K_0 -- indexes of the respective Tits algebras.Comment: 23 pages; this is an essentially extended version of the previous preprint: the construction of an equivariant cycle (co)homology and the spectral sequence (generalizing the long exact localization sequence) are adde
    corecore