28 research outputs found

    Detection of Foodborne Pathogens Using Proteomics and Metabolomics-Based Approaches

    Get PDF
    Considering the short shelf-life of certain food products such as red meat, there is a need for rapid and cost-effective methods for pathogen detection. Routine pathogen testing in food laboratories mostly relies on conventional microbiological methods which involve the use of multiple selective culture media and long incubation periods, often taking up to 7 days for confirmed identifications. The current study investigated the application of omics-based approaches, proteomics using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) and metabolomics using gas chromatography-mass spectrometry (GC-MS), for detection of three red meat pathogens – Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7. Species-level identification was achieved within 18 h for S. enterica and E. coli O157:H7 and 30 h for L. monocytogenes using MALDI-ToF MS analysis. For the metabolomics approach, metabolites were extracted directly from selective enrichment broth samples containing spiked meat samples (obviating the need for culturing on solid media) and data obtained using GC-MS were analyzed using chemometric methods. Putative biomarkers relating to L. monocytogenes, S. enterica and E. coli O157:H7 were observed within 24, 18, and 12 h, respectively, of inoculating meat samples. Many of the identified metabolites were sugars, fatty acids, amino acids, nucleosides and organic acids. Secondary metabolites such as cadaverine, hydroxymelatonin and 3,4-dihydroxymadelic acid were also observed. The results obtained in this study will assist in the future development of rapid diagnostic tests for these important foodborne pathogens

    Chemometric Analysis of Lavender Essential Oils Using Targeted and Untargeted GC-MS Acquired Data for the Rapid Identification and Characterization of Oil Quality

    No full text
    Standard raw material test methods such as the ISO Standard 11024 are focused on the identification of lavender oil and not the actual class/quality of the oil. However, the quality of the oil has a significant effect on its price at market. As such, there is a need for raw material tests to identify not only the type of oil but its quality. This paper describes two approaches to rapidly identifying and classifying lavender oil. First, the ISO Standard 11024 test method was evaluated in order to determine its suitability to assess lavender oil quality but due to its targeted and simplistic approach, it has the potential to miss classify oil quality. Second, utilizing the data generated by the ISO Standard 11024 test methodology, an untargeted chemometric predicative model was developed in order to rapidly assess and characterize lavender oils (Lavandula angustifolia L.) for geographical/environmental adulteration that impact quality. Of the 170 compounds identified as per the ISO Standard 11024 test method utilizing GC-MS analyses, 15 unique compounds that greatly differentiate between the two classes of lavender were identified. Using these 15 compounds, a predicative multivariate chemometric model was developed that enabled lavender oil samples to be reliably differentiated based on quality. A misclassification analysis was performed and it was found that the predictions were sound (100% matching rate). Such an approach will enable producers, distributers, suppliers and manufactures to rapidly screen lavender essential oil. The authors concede that the validation and implementation of such an approach is more difficult than a conventional chromatographic assay. However, the rapid, reliable and less problematic screening is vastly superior and easily justifies any early implementation validation difficulties and costs

    Optimization of degradation of winery-derived biomass waste by Ascomycetes

    No full text
    BACKGROUND: Recently, winery wastes have been classified as pollutants by the European Union and post-product processing is required to lower their hazards. Individual fungal enzymes have limited capacity so mixed fungal degradation combined with pre-treatment can decrease biomass recalcitrance for more efficient breakdown, overcoming these limitations. RESULTS: Winery biomass degradation by a mixture of Trichoderma harzianum, Aspergillus niger, Penicillium chrysogenum and P. citrinum in submerged fermentation and solid state fermentation (SSF) was evaluated. Higher cellulase and β-glucosidase activities were observed in SSF and submerged fermentation, respectively. Statistical modelling predicted the fungal percentage ratio of 60:14:4:2 for A. niger: P. chrysogenum: T. harzianum: P citrinum with a substrate:medium ratio of 0.39:1. Under the optimized conditions, cellulase, xylanase and β-glucosidase activities increased to 78.5, 3544.7 and 250.9 U mL-1, respectively. Cellulases and xylanases activities increased more than two-fold. Lignin degradation increased from 8% in submerged fermentation (P. chrysogenum) to 17.9% under optimized conditions. Gas chromatography-mass spectrometry (GC-MS) analysis identified 78 significant metabolites, of which stigmasterol, glycerol, maleic acid, xylitol and citric acid were generated by fungal degradation. CONCLUSIONS: Enhanced degradation of winery-derived biomass was achieved using mixed fungal cultures. GC-MS analysis indicated the production of commercially important metabolites during the process

    Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals

    No full text
    Microbial-influenced corrosion (MIC) has been known to have economic, environmental, and social implications to offshore oil and gas pipelines, concrete structures, and piped water assets. While corrosion itself is a relatively simple process, the localised manner of corrosion makes in situ assessments difficult. Furthermore, corrosion assessments tend to be measured as part of a forensic investigation. Compounding the issue further is the impact of microbiological/biofilm processes, where corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. While traditional microbiological culture-dependent techniques and electrochemical/physical assessments provide some insight into corrosion activity, the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments are scarce. One avenue to explore MIC and MIC inhibition is through the application of omics-based techniques, where insight into the bacterial population in terms of diversification and their metabolism can be further understood. As such, this paper discusses the recent progresses made in a number of fields that have used omics-based applications to improve the fundamental understanding of biofilms and MIC processes

    Lactobacillus acidophilus DDS-1 Modulates the Gut Microbiota and Improves Metabolic Profiles in Aging Mice

    No full text
    Recent evidence suggests that gut microbiota shifts can alter host metabolism even during healthy aging. Lactobacillus acidophilus DDS-1, a probiotic strain, has shown promising probiotic character in vitro, as well as in clinical studies. The present study was carried out to investigate whether DDS-1 can modulate the host metabolic phenotype under the condition of age-affected gut microbial shifts in young and aging C57BL/6J mice. Collected fecal samples were analyzed using 16S rRNA gene sequencing for identifying gut microbiota and untargeted gas chromatography-mass spectrometry (GC-MS) metabolomics analysis. Gut microbial shifts were observed in the control groups (young and aging), leading to an alteration in metabolism. Principal coordinate analysis (PCoA) of microbiota indicated distinct separation in both the DDS-1-treated groups. L. acidophilus DDS-1 increased the relative abundances of beneficial bacteria, such as Akkermansia muciniphila and Lactobacillus spp., and reduced the relative levels of opportunistic bacteria such as Proteobacteria spp. Metabolic pathway analysis identified 10 key pathways involving amino acid metabolism, protein synthesis and metabolism, carbohydrate metabolism, and butanoate metabolism. These findings suggest that modulation of gut microbiota by DDS-1 results in improvement of metabolic phenotype in the aging mice

    Modulating the Microbiome and Immune Responses Using Whole Plant Fibre in Synbiotic Combination with Fibre-Digesting Probiotic Attenuates Chronic Colonic Inflammation in Spontaneous Colitic Mice Model of IBD

    No full text
    A probiotic and prebiotic food ingredient combination was tested for synergistic functioning in modulation of the colonic microbiome and remediation of the gastrointestinal immune and inflammatory responses in a spontaneous colitic mouse model. Bacillus coagulans MTCC5856 spores with capability to metabolise complex plant polysaccharides were supplemented with complex whole-plant prebiotic sugarcane fibre (PSCF). The combined and individual efficacies were tested for their influence on the outcomes of chronic inflammation in Muc2 mutant colitic Winnie mice. The mice were fed normal chow diet supplemented with either ingredient or a combination for 21 days. Synbiotic combined supplementation ameliorated clinical symptoms and histological colonic damage scores more effectively than either B. coagulans or PSCF alone. PSCF and B. coagulans alone also induced considerable immunomodulatory effects. Synbiotic supplementation however was the most efficacious in modulating the overall immune profile compared to the unsupplemented Winnie-control. The augmented synbiotic effect could potentially be due to a combination of increased levels of fermentation products, direct immune-modulating abilities of the components, their capability to reduce colonic epithelial damage and/or modulation of the microbiota. The beneficial effects of the supplementation with a complex plant fibre and a fibre-degrading probiotic parallel the effects seen in human microbiota with high plant fibre diets

    Chemoradiation therapy changes oral microbiome and metabolomic profiles in patients with oral cavity cancer and oropharyngeal cancer

    No full text
    Background: Patients with oral cavity cancer (OCC) and oropharyngeal cancer (OPC) are often seen with locoregionally advanced disease requiring complex multimodality treatments. These treatments may have detrimental effects on the oral microbiome, which is critical to maintaining physiological balance and health. Methods: The effects of different OCC and OPC treatment types on the oral microbiome and metabolomic profiles for 24-month post-treatment in patients with OCC and OPC were investigated using 16S rRNA gene amplicon next-generation sequencing and gas chromatography–mass spectrometry (GC–MS), respectively. Results: Chemoradiation resulted in oral dysbiosis with specific depletion of genera which regulate the enterosalivary nitrate–nitrite–nitric oxide pathway. These data also correlate with the oral metabolomic profiles with nitric oxide-related precursor, modulator, or catalyst significantly downregulated in saliva samples from patients' postchemoradiation. Conclusions: Together, we have shown that oral dysbiosis due to the effects of chemoradiation could potentially have an impact on OCC and OPC patient's quality of life post-treatment.</p

    Utilizing the food–pathogen metabolome to putatively identify biomarkers for the detection of shiga toxin-producing e. coli (STEC) from spinach

    Get PDF
    Shiga toxigenic E. coli (STEC) are an important cause of foodborne disease globally with many outbreaks linked to the consumption of contaminated foods such as leafy greens. Existing methods for STEC detection and isolation are time-consuming. Rapid methods may assist in preventing contaminated products from reaching consumers. This proof-of-concept study aimed to determine if a metabolomics approach could be used to detect STEC contamination in spinach. Using untargeted metabolic profiling, the bacterial pellets and supernatants arising from bacterial and inoculated spinach enrichments were investigated for the presence of unique metabolites that enabled categorization of three E. coli risk groups. A total of 109 and 471 metabolite features were identified in bacterial and inoculated spinach enrichments, respectively. Supervised OPLS-DA analysis demonstrated clear discrimination between bacterial enrichments containing different risk groups. Further analysis of the spinach enrichments determined that pathogen risk groups 1 and 2 could be easily discriminated from the other groups, though some clustering of risk groups 1 and 2 was observed, likely representing their genomic similarity. Biomarker discovery identified metabolites that were significantly associated with risk groups and may be appropriate targets for potential biosensor development. This study has confirmed that metabolomics can be used to identify the presence of pathogenic E. coli likely to be implicated in human disease

    Synbiotic Supplementation Containing Whole Plant Sugar Cane Fibre and Probiotic Spores Potentiates Protective Synergistic Effects in Mouse Model of IBD

    Get PDF
    Inflammatory bowel diseases (IBD) are a chronic inflammatory disorders with increasing global incidence. Synbiotic, which is a two-point approach carrying probiotic and prebiotic components in mitigating inflammation in IBD, is thought to be a pragmatic approach owing to the synergistic outcomes. In this study, the impacts of dietary supplementation with probiotic Bacillus coagulans MTCC5856 spores (B. coagulans) and prebiotic whole plant sugar cane fibre (PSCF) was assessed using a murine model of IBD. Eight-week-old C57BL/6 mice were fed a normal chow diet supplemented with either B. coagulans, PSCF or its synbiotic combination. After seven days of supplementation, colitis was induced with dextran sulfate sodium (DSS) in drinking water for seven days during the continuation of the supplemented diets. Synbiotic supplementation ameliorated disease activity index and histological score (&#8722;72%, 7.38, respectively), more effectively than either B. coagulans (&#8722;47%, 10.1) and PSCF (&#8722;53%, 13.0) alone. Synbiotic supplementation also significantly (p &lt; 0.0001) prevented the expression of tight junction proteins and modulated the altered serum IL-1&#946; (&#8722;40%), IL-10 (+26%), and C-reactive protein (CRP) (&#8722;39%) levels. Synbiotic supplementations also raised the short-chain fatty acids (SCFA) profile more extensively compared to the unsupplemented DSS-control. The synbiotic health outcome effect of the probiotic and prebiotic combinations may be associated with a synergistic direct immune-regulating efficacy of the components, their ability to protect epithelial integrity, stimulation of probiotic spores by the prebiotic fibre, and/or with stimulation of greater levels of fermentation of fibres releasing SCFAs that mediate the reduction in colonic inflammation. Our model findings suggest synbiotic supplementation should be tested in clinical trials
    corecore