11 research outputs found
Management of acute promyelocytic leukemia in the setting of acute COVID-19 infection
Acute promyelocytic leukemia (APL) often presents with significant coagulopathy which may result in both hemorrhagic and thrombotic complications. The emergence of the COVID-19 pandemic has complicated the initial treatment and diagnosis of APL owing to the viral infection\u27s own associated coagulopathy. Here we report two cases of APL newly diagnosed in the setting of COVID-19 infection and considerations in their management. Included is a discussion of strategies for the dosing of arsenic trioxide in patients with significant obesity and renal insufficiency. The case series submitted does not represent a study on patients and thus no specific informed consents or permissions were required. All images included in our manuscript have been deidentified and all authors certify that personal details that could potentially be used to identify the patients in the cases described have been removed. The corresponding author has personally confirmed that both patients included in this study have given verbal permission to present their cases in the de-identified manner as described above
Increased clonal hematopoiesis involving DNA damage response genes in patients undergoing lung transplantation
BACKGROUNDCellular stressors influence the development of clonal hematopoiesis (CH). We hypothesized that environmental, inflammatory, and genotoxic stresses drive the emergence of CH in lung transplant recipients. METHODSWe performed a cross-sectional cohort study of 85 lung transplant recipients to characterize CH prevalence. We evaluated somatic variants using duplex error-corrected sequencing and germline variants using whole exome sequencing. We evaluated CH frequency and burden using Ļ2 and Poisson regression, and we evaluated associations with clinical and demographic variables and clinical outcomes using Ļ2, logistic regression, and Cox regression. RESULTSCH in DNA damage response (DDR) genes TP53, PPM1D, and ATM was increased in transplant recipients compared with a control group of older adults (28% versus 0%, adjusted OR [aOR], 12.9 [1.7-100.3], P = 0.0002). Age (OR, 1.13 [1.03-1.25], P = 0.014) and smoking history (OR 4.25 [1.02-17.82], P = 0.048) were associated with DDR CH. Germline variants predisposing to idiopathic pulmonary fibrosis were identified but not associated with CH. DDR CH was associated with increased cytomegalovirus viremia versus patients with no (OR, 7.23 [1.95-26.8], P = 0.018) or non-DDR CH (OR, 7.64 [1.77-32.89], P = 0.024) and mycophenolate discontinuation (aOR, 3.8 [1.3-12.9], P = 0.031). CONCLUSIONCH in DDR genes is prevalent in lung transplant recipients and is associated with posttransplant outcomes including cytomegalovirus activation and mycophenolate intolerance. FUNDINGNIH/NHLBI K01HL155231 (LKT), R25HL105400 (LKT), Foundation for Barnes-Jewish Hospital (LKT), Evans MDS Center at Washington University (KAO, MJW), ASH Scholar Award (KAO), NIH K12CA167540 (KAO), NIH P01AI116501 (AEG, DK), NIH R01HL094601 (AEG), and NIH P01CA101937 (DCL)
IMC-Denoise: A content aware denoising pipeline to enhance Imaging Mass Cytometry
Imaging Mass Cytometry (IMC) is an emerging multiplexed imaging technology for analyzing complex microenvironments using more than 40 molecularly-specific channels. However, this modality has unique data processing requirements, particularly for patient tissue specimens where signal-to-noise ratios for markers can be low, despite optimization, and pixel intensity artifacts can deteriorate image quality and downstream analysis. Here we demonstrate an automated content-aware pipeline, IMC-Denoise, to restore IMC images deploying a differential intensity map-based restoration (DIMR) algorithm for removing hot pixels and a self-supervised deep learning algorithm for shot noise image filtering (DeepSNiF). IMC-Denoise outperforms existing methods for adaptive hot pixel and background noise removal, with significant image quality improvement in modeled data and datasets from multiple pathologies. This includes in technically challenging human bone marrow; we achieve noise level reduction of 87% for a 5.6-fold higher contrast-to-noise ratio, and more accurate background noise removal with approximately 2āĆāimproved F1 score. Our approach enhances manual gating and automated phenotyping with cell-scale downstream analyses. Verified by manual annotations, spatial and density analysis for targeted cell groups reveal subtle but significant differences of cell populations in diseased bone marrow. We anticipate that IMC-Denoise will provide similar benefits across mass cytometric applications to more deeply characterize complex tissue microenvironments
Genomic landscape of TP53-mutated myeloid malignancies
TP53-mutated myeloid malignancies are associated with complex cytogenetics and extensive structural variants, which complicates detailed genomic analysis by conventional clinical techniques. We performed whole-genome sequencing (WGS) of 42 acute myeloid leukemia (AML)/myelodysplastic syndromes (MDS) cases with paired normal tissue to better characterize the genomic landscape of TP53-mutated AML/MDS. WGS accurately determines TP53 allele status, a key prognostic factor, resulting in the reclassification of 12% of cases from monoallelic to multihit. Although aneuploidy and chromothripsis are shared with most TP53-mutated cancers, the specific chromosome abnormalities are distinct to each cancer type, suggesting a dependence on the tissue of origin. ETV6 expression is reduced in nearly all cases of TP53-mutated AML/MDS, either through gene deletion or presumed epigenetic silencing. Within the AML cohort, mutations of NF1 are highly enriched, with deletions of 1 copy of NF1 present in 45% of cases and biallelic mutations in 17%. Telomere content is increased in TP53-mutated AMLs compared with other AML subtypes, and abnormal telomeric sequences were detected in the interstitial regions of chromosomes. These data highlight the unique features of TP53-mutated myeloid malignancies, including the high frequency of chromothripsis and structural variation, the frequent involvement of unique genes (including NF1 and ETV6) as cooperating events, and evidence for altered telomere maintenance
Two distinct signalling cascades target the NF-ĪŗB regulatory factor c-IAP1 for degradation
c-IAP1 (cellular inhibitor of apoptosis 1) has recently emerged as a negative regulator of the non-canonical NF-ĪŗB (nuclear factor ĪŗB) signalling cascade. Whereas synthetic IAP inhibitors have been shown to trigger the autoubiquitination and degradation of c-IAP1, less is known about the physiological mechanisms by which c-IAP1 stability is regulated. In the present paper, we describe two distinct cellular processes that lead to the targeted loss of c-IAP1. Recruitment of a TRAF2 (tumour necrosis factor receptor-associated factor 2)āc-IAP1 complex to the cytoplasmic domain of the Hodgkin's/anaplastic large-cell lymphoma-associated receptor, CD30, leads to the targeting and degradation of the TRAF2āc-IAP1 heterodimer through a mechanism requiring the RING (really interesting new gene) domain of TRAF2, but not c-IAP1. In contrast, the induced autoubiquitination of c-IAP1 by IAP antagonists causes the selective loss of c-IAP1, but not TRAF2, thereby releasing TRAF2. Thus c-IAP1 can be targeted for degradation by two distinct processes, revealing the critical importance of this molecule as a regulator of numerous intracellular signalling cascades
TGF-Ī² signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche
Myeloproliferative neoplasms (MPNs) are associated with significant alterations in the bone marrow microenvironment that include decreased expression of key niche factors and myelofibrosis. Here, we explored the contribution of TGF-Ī² to these alterations by abrogating TGF-Ī² signaling in bone marrow mesenchymal stromal cells. Loss of TGF-Ī² signaling in Osx-Cre-targeted MSCs prevented the development of myelofibrosis in both MPLW515L and Jak2V617F models of MPNs. In contrast, despite the absence of myelofibrosis, loss of TGF-Ī² signaling in mesenchymal stromal cells did not rescue the defective hematopoietic niche induced by MPLW515L, as evidenced by decreased bone marrow cellularity, hematopoietic stem/progenitor cell number, and Cxcl12 and Kitlg expression, and the presence of splenic extramedullary hematopoiesis. Induction of myelofibrosis by MPLW515L was intact in Osx-Cre Smad4fl/fl recipients, demonstrating that SMAD4-independent TGF-Ī² signaling mediates the myelofibrosis phenotype. Indeed, treatment with a c-Jun N-terminal kinase (JNK) inhibitor prevented the development of myelofibrosis induced by MPLW515L. Together, these data show that JNK-dependent TGF-Ī² signaling in mesenchymal stromal cells is responsible for the development of myelofibrosis but not hematopoietic niche disruption in MPNs, suggesting that the signals that regulate niche gene expression in bone marrow mesenchymal stromal cells are distinct from those that induce a fibrogenic program
Successful salvage chemotherapy and allogeneic transplantation of an acute myeloid leukemia patient with disseminated Fusarium solani infection
Disseminated Fusarium infection is associated with high mortality in immunocompromised patients. Patients with acute myeloid leukemia (AML) often have an extended duration of neutropenia during intensive induction chemotherapy, consolidation chemotherapy, and hematopoietic stem cell transplantation (SCT). There is no consensus regarding management of invasive disseminated Fusarium infections in the setting of prolonged neutropenia (Tortorano et al., 2014) [1]. We report a case of disseminated Fusarium in a patient with relapsed AML who underwent successful chemotherapy and haplo-identical allogeneic SCT with administration of granulocyte colony stimulating factor (G-CSF) and granulocyte infusions