7 research outputs found

    Scikick: a sidekick for workflow clarity and reproducibility during extensive data analysis /

    No full text
    Reproducibility is crucial for scientific progress, yet a clear research data analysis workflow is challenging to implement and maintain. As a result, a record of computational steps performed on the data to arrive at the key research findings is often missing. We developed Scikick, a tool that eases the configuration, execution, and presentation of scientific computational analyses. Scikick allows for workflow configurations with notebooks as the units of execution, defines a standard structure for the project, automatically tracks the defined interdependencies between the data analysis steps, and implements methods to compile all research results into a cohesive final report. Utilities provided by Scikick help turn the complicated management of transparent data analysis workflows into a standardized and feasible practice. Scikick version 0.2.1 code and documentation is available as supplementary material. The Scikick software is available on GitHub (https://github.com/matthewcarlucci/scikick) and is distributed with PyPi (https://pypi.org/project/scikick/) under a GPL-3 license

    DiscoRhythm: an easy-to-use web application and R package for discovering rhythmicity

    No full text
    MOTIVATION: Biological rhythmicity is fundamental to almost all organisms on Earth and plays a key role in health and disease. Identification of oscillating signals could lead to novel biological insights, yet its investigation is impeded by the extensive computational and statistical knowledge required to perform such analysis. RESULTS: To address this issue, we present DiscoRhythm (Discovering Rhythmicity), a user-friendly application for characterizing rhythmicity in temporal biological data. DiscoRhythm is available as a web application or an R/Bioconductor package for estimating phase, amplitude, and statistical significance using four popular approaches to rhythm detection (Cosinor, JTK Cycle, ARSER, and Lomb-Scargle). We optimized these algorithms for speed, improving their execution times up to 30-fold to enable rapid analysis of -omic-scale datasets in real-time. Informative visualizations, interactive modules for quality control, dimensionality reduction, periodicity profiling, and incorporation of experimental replicates make DiscoRhythm a thorough toolkit for analyzing rhythmicity. AVAILABILITY AND IMPLEMENTATION: The DiscoRhythm R package is available on Bioconductor (https://bioconductor.org/packages/DiscoRhythm), with source code available on GitHub (https://github.com/matthewcarlucci/DiscoRhythm) under a GPL-3 license. The web application is securely deployed over HTTPS (https://disco.camh.ca) and is freely available for use worldwide. Local instances of the DiscoRhythm web application can be created using the R package or by deploying the publicly available Docker container (https://hub.docker.com/r/mcarlucci/discorhythm). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Circadian oscillations of cytosine modification in humans contribute to epigenetic variability, aging, and complex disease

    No full text
    Abstract Background Maintenance of physiological circadian rhythm plays a crucial role in human health. Numerous studies have shown that disruption of circadian rhythm may increase risk for malignant, psychiatric, metabolic, and other diseases. Results Extending our recent findings of oscillating cytosine modifications (osc-modCs) in mice, in this study, we show that osc-modCs are also prevalent in human neutrophils. Osc-modCs may play a role in gene regulation, can explain parts of intra- and inter-individual epigenetic variation, and are signatures of aging. Finally, we show that osc-modCs are linked to three complex diseases and provide a new interpretation of cross-sectional epigenome-wide association studies. Conclusions Our findings suggest that loss of balance between cytosine methylation and demethylation during the circadian cycle can be a potential mechanism for complex disease. Additional experiments, however, are required to investigate the possible involvement of confounding effects, such as hidden cellular heterogeneity. Circadian rhythmicity, one of the key adaptations of life forms on Earth, may contribute to frailty later in life

    Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging

    No full text
    Circadian rhythmicity governs a remarkable array of fundamental biological functions and is mediated by cyclical transcriptomic and proteomic activities. Epigenetic factors are also involved in this circadian machinery; however, despite extensive efforts, detection and characterization of circadian cytosine modifications at the nucleotide level have remained elusive. In this study, we report that a large proportion of epigenetically variable cytosines show a circadian pattern in their modification status in mice. Importantly, the cytosines with circadian epigenetic oscillations significantly overlap with the cytosines exhibiting age-related changes in their modification status. Our findings suggest that evolutionary advantageous processes such as circadian rhythmicity can also contribute to an organism's deterioration
    corecore