5 research outputs found
Preparation and Characterization of Multifunctional Chitin/Lignin Materials
Multifunctional chitin/lignin materials were synthesized. In order to combine mechanical milling of the biopolymers with simultaneous mixing, a centrifugal ball mill was utilized. The resulting materials, differing in terms of the proportions of precursors used, underwent detailed physicochemical and dispersive-morphological analysis. On the basis of FT-IR spectra and results of elemental analysis, the efficiency of the preparation of the materials was determined. The influence of the precursors on the thermal stability of the resulting systems was also evaluated. Zeta potential was determined as a function of pH to describe the electrokinetic stability of aqueous dispersions. This is important for evaluating the utility of the materials and indirectly confirms the effectiveness of the proposed method of synthesis of chitin/lignin products. Measurements were performed to determine basic colorimetric parameters, crucial in the production technology of multiple colored materials. It is expected that chitin/lignin materials will find a wide range of applications (biosorbents, polymer fillers, and electrochemical sensors), as they combine the unique properties of chitin with the specific structural features of lignin to provide a multifunctional material
Epoxy Resin Composite Based on Functional Hybrid Fillers
A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM
Preparation and Physicochemical Properties of Functionalized Silica/Octamethacryl-Silsesquioxane Hybrid Systems
Alkoxysilane-grafted silica/polyhedral oligomeric silsesquioxane with methacryl substituents (SiO2/silane/POSS) hybrid material was synthesized according to hydrolyzation and condensation reactions in the so-called “bifunctionalization process.” It is a new attractive system because of its physicochemical, especially thermal and structural, properties. This innovative method of preparation as well as specific physicochemical and useful properties determine the potential applications of such products in many industries. The structure and physicochemical parameters of obtained hybrid systems were characterized using infrared spectroscopy (FTIR), 13C and 29Si solid-state nuclear magnetic resonance (CP MAS NMR), and thermal analysis. The mechanism of bifunctionalization reaction was proposed. The chemical immobilization of silane coupling agent and Methacryl POSS onto silica support surface was noted during the study. Those changes caused a significant increase in the hydrophobic character of fillers obtained. Moreover, changes in thermal stability of SiO2/silane/POSS hybrid systems in comparison to pure POSS modifier were also observed
Physicochemical Problems of Mineral Processing ADVANCED BIOCOMPOSITES BASED ON SILICA AND LIGNIN PRECURSORS
Abstract: A new method is proposed for obtaining biocomposites based on a combination of silica and lignin precursors. Amorphous silica was produced by two methods: one based on hydrolysis and condensation of tetraethoxysilane (sol-gel method) and the other involving precipitation in a polar medium. Additionally, the commercial silica known under the name of Syloid ® 244 was used. The silica surface was modified to ensure better affinity of the support to activated lignin. The biocomposites obtained were carefully characterised by determination of their physicochemical and dispersivemorphological properties. Electrokinetic stability of the biocomposites was evaluated on the basis of zeta potential dependence on pH. Thermal stability of the biocomposites and their porous structure parameters (surface area, pore diameter and pore volume) were established. The results indicate that silica/lignin biocomposites are much promising for application in many areas of science and industry