13,635 research outputs found

    Review of From Classroom to Battlefield: Victoria High School and the First World War by Barry Gough

    Get PDF
    Review of From Classroom to Battlefield: Victoria High School and the First World War by Barry Gough

    Songs of War: Anglo-Canadian Popular Songs on the Home Front, 1914-1918

    Get PDF
    This article explores the production, content, and reception of Anglo-Canadian popular songs composed during the First World War. It argues that popular songs reflected the changing attitudes of Anglo-Canadians, as composers and publishers created music to fulfill different purposes for those on the home front at various stages of the war. In the beginning, the majority of songs were patriotic marches composed to gather support for Britain and the Empire. As the war continued, there was an increase in the number of patriotic songs that expressed a growing sense of wartime Canadian nationalism to enlist recruits. Throughout the war, music was significant to the First World War experience on Canada’s home front

    A Candidate Subspecies Discrimination System Involving a Vomeronasal Receptor Gene with Different Alleles Fixed in \u3ci\u3eM. m. domesticus\u3c/i\u3e and \u3ci\u3eM. m. musculus\u3c/i\u3e

    Get PDF
    Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown) that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus) meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s), also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO), by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24) are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD) between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP) capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(sub)specific polymorphism but no inter(sub)specific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive selection, but was derived from an introgressed allele, possibly from Mus spretus

    The Roles of Gene Duplication, Gene Conversion and Positive Selection in Rodent \u3ci\u3eEsp\u3c/i\u3e and \u3ci\u3eMup\u3c/i\u3e Pheromone Gene Families with Comparison to the \u3ci\u3eAbp\u3c/i\u3e Family

    Get PDF
    Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining Ka/Ks for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with Ka/Ks \u3e1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication

    The Mechanism of Expansion and the Volatility it created in Three Pheromone Gene Clusters in the Mouse (\u3ci\u3eMus musculus\u3c/i\u3e) Genome

    Get PDF
    Three families of proteinaceous pheromones have been described in the house mouse: androgen-binding proteins (ABPs), exocrine gland–secreting peptides (ESPs), and major urinary proteins (MUPs), each of which is thought to communicate different information. All three are encoded by large gene clusters in different regions of the mouse genome, clusters that have expanded dramatically during mouse evolutionary history. We report copy number variation among the most recently duplicated Abp genes, which suggests substantial volatility in this gene region. It appears that groups of these genes behave as low copy repeats (LCRs), duplicating as relatively large blocks of genes by nonallelic homologous recombination. An analysis of gene conversion suggested that it did not contribute to the very low or absent divergence among the paralogs duplicated in this way. We evaluated the ESP and MUP gene regions for signs of the LCR pattern but could find no compelling evidence for duplication of gene blocks of any significant size. Assessment of the entire Abp gene region with the Mouse Paralogy Browser supported the conclusion that substantial volatility has occurred there. This was especially evident when comparing strains with all or part of the Mus musculus musculus or Mus musculus castaneus Abp region. No particularly remarkable volatility was observed in the other two gene families, and we discuss the significance of this in light of the various roles proposed for the three families of mouse proteinaceous pheromones

    Algebraic orthogonality and commuting projections in operator algebras

    Full text link
    We describe absolutely ordered pp-normed spaces, for 1≤p≤∞1 \le p \le \infty which presents a model for "non-commutative" vector lattices and includes order theoretic orthogonality. To demonstrate its relevance, we introduce the notion of {\it absolute compatibility} among positive elements in absolute order unit spaces and relate it to symmetrized product in the case of a C∗^{\ast}-algebra. In the latter case, whenever one of the elements is a projection, the elements are absolutely compatible if and only if they commute. We develop an order theoretic prototype of the results. For this purpose, we introduce the notion of {\it order projections} and extend the results related to projections in a unital C∗^{\ast}-algebra to order projections in an absolute order unit space. As an application, we describe spectral decomposition theory for elements of an absolute order unit space.Comment: 2
    • …
    corecore