4,124 research outputs found

    Electron correlations in Mnx_xGa1−x_{1-x}As as seen by resonant electron spectroscopy and dynamical mean field theory

    Get PDF
    After two decades from the discovery of ferromagnetism in Mn-doped GaAs, its origin is still debated, and many doubts are related to the electronic structure. Here we report an experimental and theoretical study of the valence electron spectrum of Mn-doped GaAs. The experimental data are obtained through the differences between off- and on-resonance photo-emission data. The theoretical spectrum is calculated by means of a combination of density-functional theory in the local density approximation and dynamical mean-field theory (LDA+DMFT), using exact diagonalisation as impurity solver. Theory is found to accurately reproduce measured data, and illustrates the importance of correlation effects. Our results demonstrate that the Mn states extend over a broad range of energy, including the top of the valence band, and that no impurity band splits off from the valence band edge, while the induced holes seem located primarily around the Mn impurity.Comment: 5 pages, 4 figure

    Polarized Neutron Laue Diffraction on a Crystal Containing Dynamically Polarized Proton Spins

    Full text link
    We report on a polarized-neutron Laue diffraction experiment on a single crystal of neodynium doped lanthanum magnesium nitrate hydrate containing polarized proton spins. By using dynamic nuclear polarization to polarize the proton spins, we demonstrate that the intensities of the Bragg peaks can be enhanced or diminished significantly, whilst the incoherent background, due to proton spin disorder, is reduced. It follows that the method offers unique possibilities to tune continuously the contrast of the Bragg reflections and thereby represents a new tool for increasing substantially the signal-to-noise ratio in neutron diffraction patterns of hydrogenous matter.Comment: 5 pages, 3 figure

    ELVIS - ELectromagnetic Vector Information Sensor

    Get PDF
    The ELVIS instrument was recently proposed by the authors for the Indian Chandrayaan-1 mission to the Moon and is presently under consideration by the Indian Space Research Organisation (ISRO). The scientific objective of ELVIS is to explore the electromagnetic environment of the moon. ELVIS samples the full three-dimensional (3D) electric field vector, E(x,t), up to 18 MHz, with selective Nyqvist frequency bandwidths down to 5 kHz, and one component of the magnetic field vector, B(x,t), from a few Hz up to 100 kHz.As a transient detector, ELVIS is capable of detecting pulses with a minimum pulse width of 5 ns. The instrument comprises three orthogonal electric dipole antennas, one magnetic search coil antenna and a four-channel digital sampling system, utilising flexible digital down conversion and filtering together with state-of-the-art onboard digital signal processing.Comment: 8 pages, 3 figures. Submitted to the DGLR Int. Symposium "To Moon and Beyond", Bremen, Germany, 2005. Companion paper to arXiv:astro-ph/050921

    Can we always get the entanglement entropy from the Kadanoff-Baym equations? The case of the T-matrix approximation

    Full text link
    We study the time-dependent transmission of entanglement entropy through an out-of-equilibrium model interacting device in a quantum transport set-up. The dynamics is performed via the Kadanoff-Baym equations within many-body perturbation theory. The double occupancy <n^R↑n^R↓>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >, needed to determine the entanglement entropy, is obtained from the equations of motion of the single-particle Green's function. A remarkable result of our calculations is that <n^R↑n^R↓>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} > can become negative, thus not permitting to evaluate the entanglement entropy. This is a shortcoming of approximate, and yet conserving, many-body self-energies. Among the tested perturbation schemes, the TT-matrix approximation stands out for two reasons: it compares well to exact results in the low density regime and it always provides a non-negative <n^R↑n^R↓>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >. For the second part of this statement, we give an analytical proof. Finally, the transmission of entanglement across the device is diminished by interactions but can be amplified by a current flowing through the system.Comment: 6 pages, 6 figure

    A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    Get PDF
    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed
    • …
    corecore