22 research outputs found

    Master of Science

    Get PDF
    thesisThis study introduces a pipeline for the temporal dilation of canine cardiac signals following registration to human torsos. Performing registration of data attained from canine electrophysiology studies to human torso geometries allows for a larger database for the investigation of human-like arrhythmias that cannot be readily obtained otherwise. However, during registration, the canine cardiac signals must be adjusted to correct spatially dependent aspects of propagation, such as conduction velocity (CV), that are influenced by increased heart size. We refer to this correction process as "temporal dilation'' as it includes resampling of the cardiac signals. We acquired 10 canine cardiac recordings from electrodes built into socks that covered the epicardial surface of the ventricles. The sock geometries were registered to two human torsos. From this spatial transform, we calculated both global and local scaling factors needed to adjust the time signals. Signals were then dilated with both scaling types using linear and nonlinear techniques. The linear method homogeneously dilated the entire signal and the nonlinear technique dilated segments of the signals outside the QRS and T wave. Dilated cardiac signals were validated by comparison of calculated values of CV, total activation time (TAT), and activation recovery interval (ARI). Activation maps also served as a means of qualitative comparison. The observed ECG metrics of canine cardiac signals after temporal dilation using global scaling closely resembled those from human recordings in terms of CV, ARI, and TAT. Temporally dilated signals using local scaling, in contrast, caused the observed ECG metrics to no longer remain within a physiologically relevant range. A realistic activation pattern was maintained after temporal dilation using global scaling. Though temporal dilation using locally calculated scaling factors did not result in physiologically relevant cardiac signals to humans, homogenous temporal dilation could be used to correct the spatially dependent aspects of propagation after geometric registration of canine hearts to human torso geometries. Homogenous temporal dilation, therefore, is a technique that can be used to generate human-like cardiac signals useful for validation of devices used to diagnose, monitor, or intervene in cases of cardiac arrhythmias

    Sensitivity Analysis of Electrocardiogram Features to Computational Model Input Parameters

    Get PDF
    Cardiac models of electrophysiology capable of generating simulated electrocardiogram (ECG) signals are an increasingly valuable tool for both personalised medicine and understanding cardiac pathologies. Sensitivity analysis (SA) can provide crucial insight into how simulation parameters affect ECG morphology. We use two SA methods, direct numerical evaluation of integrals and polynomial chaos expansion, to calculate main and total effects for ECG features extracted from QRS complexes generated by a cardiac ventricular model. The importance of stimulation site parameters on output ECG features is evaluated. SA methods can highlight and quantify important input parameters for different ECG morphology features, which in some cases can be linked to physiological explanations. For example R peak amplitude in lead II depends on apicobasal location of stimulation sites in the left ventricle. Furthermore, different SA methods have different strengths and weaknesses. Insight into parameter importance supports model development and allows for more nuanced and patient-specific simulation changes

    Automated Localization of Focal Ventricular Tachycardia From Simulated Implanted Device Electrograms:A Combined Physics–AI Approach

    Get PDF
    Background: Focal ventricular tachycardia (VT) is a life-threating arrhythmia, responsible for high morbidity rates and sudden cardiac death (SCD). Radiofrequency ablation is the only curative therapy against incessant VT; however, its success is dependent on accurate localization of its source, which is highly invasive and time-consuming. Objective: The goal of our study is, as a proof of concept, to demonstrate the possibility of utilizing electrogram (EGM) recordings from cardiac implantable electronic devices (CIEDs). To achieve this, we utilize fast and accurate whole torso electrophysiological (EP) simulations in conjunction with convolutional neural networks (CNNs) to automate the localization of focal VTs using simulated EGMs. Materials and Methods: A highly detailed 3D torso model was used to simulate ∼4000 focal VTs, evenly distributed across the left ventricle (LV), utilizing a rapid reaction-eikonal environment. Solutions were subsequently combined with lead field computations on the torso to derive accurate electrocardiograms (ECGs) and EGM traces, which were used as inputs to CNNs to localize focal sources. We compared the localization performance of a previously developed CNN architecture (Cartesian probability-based) with our novel CNN algorithm utilizing universal ventricular coordinates (UVCs). Results: Implanted device EGMs successfully localized VT sources with localization error (8.74 mm) comparable to ECG-based localization (6.69 mm). Our novel UVC CNN architecture outperformed the existing Cartesian probability-based algorithm (errors = 4.06 mm and 8.07 mm for ECGs and EGMs, respectively). Overall, localization was relatively insensitive to noise and changes in body compositions; however, displacements in ECG electrodes and CIED leads caused performance to decrease (errors 16–25 mm). Conclusion: EGM recordings from implanted devices may be used to successfully, and robustly, localize focal VT sources, and aid ablation planning

    Leadless biventricular left bundle and endocardial lateral wall pacing versus left bundle only pacing in left bundle branch block patients

    No full text
    Biventricular endocardial (BIV-endo) pacing and left bundle pacing (LBP) are novel delivery methods for cardiac resynchronization therapy (CRT). Both pacing methods can be delivered through leadless pacing, to avoid risks associated with endocardial or transvenous leads. We used computational modelling to quantify synchrony induced by BIV-endo pacing and LBP through a leadless pacing system, and to investigate how the right-left ventricle (RV-LV) delay, RV lead location and type of left bundle capture affect response. We simulated ventricular activation on twenty-four four-chamber heart meshes inclusive of His-Purkinje networks with left bundle branch block (LBBB). Leadless biventricular (BIV) pacing was simulated by adding an RV apical stimulus and an LV lateral wall stimulus (BIV-endo lateral) or targeting the left bundle (BIV-LBP), with an RV-LV delay set to 5 ms. To test effect of prolonged RV-LV delays and RV pacing location, the RV-LV delay was increased to 35 ms and/or the RV stimulus was moved to the RV septum. BIV-endo lateral pacing was less sensitive to increased RV-LV delays, while RV septal pacing worsened response compared to RV apical pacing, especially for long RV-LV delays. To investigate how left bundle capture affects response, we computed 90% BIV activation times (BIVAT-90) during BIV-LBP with selective and non-selective capture, and left bundle branch area pacing (LBBAP), simulated by pacing 1 cm below the left bundle. Non-selective LBP was comparable to selective LBP. LBBAP was worse than selective LBP (BIVAT-90: 54.2 ± 5.7 ms vs. 62.7 ± 6.5, p < 0.01), but it still significantly reduced activation times from baseline. Finally, we compared leadless LBP with RV pacing against optimal LBP delivery through a standard lead system by simulating BIV-LBP and selective LBP alone with and without optimized atrioventricular delay (AVD). Although LBP alone with optimized AVD was better than BIV-LBP, when AVD optimization was not possible BIV-LBP outperformed LBP alone, because the RV pacing stimulus shortened RV activation (BIVAT-90: 54.2 ± 5.7 ms vs. 66.9 ± 5.1 ms, p < 0.01). BIV-endo lateral pacing or LBP delivered through a leadless system could potentially become an alternative to standard CRT. RV-LV delay, RV lead location and type of left bundle capture affect leadless pacing efficacy and should be considered in future trial designs

    MedalCare-XL: 16,900 healthy and pathological synthetic 12 lead ECGs from electrophysiological simulations

    Get PDF
    Abstract Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals possess known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addition to clinical signals. Recently, synthetic ECGs were used to enrich sparse clinical data or even replace them completely during training leading to improved performance on real-world clinical test data. We thus generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed into healthy control and 7 pathology classes. The pathological case of myocardial infraction had 6 sub-classes. A comparison of extracted features between the virtual cohort and a publicly available clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and pathological subpopulations with high fidelity. The ECG database is split into training, validation, and test folds for development and objective assessment of novel machine learning algorithms

    Linking statistical shape models and simulated function in the healthy adult human heart.

    No full text
    Cardiac anatomy plays a crucial role in determining cardiac function. However, there is a poor understanding of how specific and localised anatomical changes affect different cardiac functional outputs. In this work, we test the hypothesis that in a statistical shape model (SSM), the modes that are most relevant for describing anatomy are also most important for determining the output of cardiac electromechanics simulations. We made patient-specific four-chamber heart meshes (n = 20) from cardiac CT images in asymptomatic subjects and created a SSM from 19 cases. Nine modes captured 90% of the anatomical variation in the SSM. Functional simulation outputs correlated best with modes 2, 3 and 9 on average (R = 0.49 ± 0.17, 0.37 ± 0.23 and 0.34 ± 0.17 respectively). We performed a global sensitivity analysis to identify the different modes responsible for different simulated electrical and mechanical measures of cardiac function. Modes 2 and 9 were the most important for determining simulated left ventricular mechanics and pressure-derived phenotypes. Mode 2 explained 28.56 ± 16.48% and 25.5 ± 20.85, and mode 9 explained 12.1 ± 8.74% and 13.54 ± 16.91% of the variances of mechanics and pressure-derived phenotypes, respectively. Electrophysiological biomarkers were explained by the interaction of 3 ± 1 modes. In the healthy adult human heart, shape modes that explain large portions of anatomical variance do not explain equivalent levels of electromechanical functional variation. As a result, in cardiac models, representing patient anatomy using a limited number of modes of anatomical variation can cause a loss in accuracy of simulated electromechanical function
    corecore