5 research outputs found

    Fluorescent angiography during SPG stimulation A, Two representative angiographic images of cortical surface vessels under control conditions (left) and during SPG stimulation (3 mA, 500 µs, right, white bar represents 0.1 mm).

    No full text
    <p>B, Intensity curves (in arbitrary intensity units, iu) for the venous (blue) and arterial (red) compartments for the venous (blue) and arterial (red) compartments (marked in (A)) during control injection (left) and SPG stimulation (right). C, % change in diameter (black) and peak-to-peak (arterial-venous) interval (red) at different stimulation intensities (1–5 mA, 500 µs).</p

    BBB breakdown, astroglial response and brain damage after SPG stimulation A, Two brain surface images after injection of Evans blue indicates BBB breakdown of RB-treated (left) and RB-SPG-15 min (right) rat brains.

    No full text
    <p>Images below display EB (blue color) intensity, color coded. Both the size of the area with increased EB and the intensity were decreased in SPG-treated rats compared to non-stimulated animals (right graph). B, Immunostaining against the astrocytic marker, GFAP (upper panels) and the microglial marker, Iba-1 (lower panel) in RB-treated (left) and the contra-lateral control hemisphere (right). Bar graphs show area measured with intracellular staining (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039636#s2" target="_blank">Methods</a>). C, Coronal sections of brains from RB (left) and RB-SPG-15 min (right) animals. Bar graphs show change in cortical volume after photothrombosis. *p<0.05.</p

    SPG stimulation in the RB-treated cortex.

    No full text
    <p>A, Brain surface images in a typical experiment before (left), and after (middle) photothrombosis and during SPG stimulation (2 mA, 500 µs, right). Note vasodilation and reperfusion of the thrombosed vessels (circled). B, Laser-Doppler recording in the same experiment as in (A), showing reduced rCBF during photothrombosis, which was partially reversible during SPG stimulation. C, Fluorescent angiography from a different rat before (left), after photothrombosis (middle) and during SPG stimulation (2 mA, 500 µs, right).</p

    A working hypothesis on SPG-induced brain protection after stroke: The ischemic core is surrounded by a peri-ischemic region which is susceptible for an irreversible injury (AKA “stroke progression”).

    No full text
    <p>The peri-ischemic lesion is characterized by dysfunction of the blood-brain barrier (BBB) which induces neuronal hyper-excitability, spreading depolarizations and seizures, inflammation and cellular damage <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039636#pone.0039636-Shlosberg1" target="_blank">[4]</a>. SPG stimulation at an early, post-insult therapeutic time window induces vasodilation and increased rCBF, sufficient to re-perfuse the ischemic core and to reduce lesion size. When stimulation is initiated at a delayed post-insult therapeutic window (24 h), vasodilation in the peri-ischemic lesion attenuates BBB injury and the associated neuronal hyper-excitability, thus preventing progression of the primary lesion.</p

    ECoG Fast Fourier Analysis: A, Averaged power of the normalized ECoG 1-3 (left) and 4–6 (right) days after photothrombosis in low and high frequency ranges (note the different right and left Y axis).

    No full text
    <p>B, Typical ECoG recordings of RB-treated (left) and sham animals (right). C, ECoG recording after high pass filter (71–90 Hz) of RB-treated (lower trace) and sham animals (upper trace). D, Duration of fast activity (sec/h) for the different treated groups. Symbols as in (A). *p<0.05.</p
    corecore