641 research outputs found

    Sorting cells by size, shape and deformability.

    Get PDF
    While size has been widely used as a parameter in cellular separations, in this communication we show how shape and deformability, a mainly untapped source of specificity in preparative and analytical microfluidic devices can be measured and used to separate cells

    A consistent reduction of the two-layer shallow-water equations to an accurate one-layer spreading model

    Full text link
    The gravity-driven spreading of one fluid in contact with another fluid is of key importance to a range of topics. To describe these phenomena, the two-layer shallow-water equations is commonly employed. When one layer is significantly deeper than the other, it is common to approximate the system with the much simpler one-layer shallow water equations. So far, it has been assumed that this approximation is invalid near shocks, and one has applied additional front conditions for the shock speed. In this paper, we prove mathematically that an effective one-layer model can be derived from the two-layer equations that correctly captures the behaviour of shocks and contact discontinuities without any additional closure relations. The proof yields a novel formulation of an effective one-layer shallow water model. The result shows that simplification to an effective one-layer model is well justified mathematically and can be made without additional knowledge of the shock behaviour. The shock speed in the proposed model is consistent with empirical models and identical to the front conditions that have been found theoretically by e.g. von K\'arm\'an and by Benjamin. This suggests that the breakdown of the shallow-water equations in the vicinity of shocks is less severe than previously thought. We further investigate the applicability of the shallow water framework to shocks by studying shocks in one-dimensional lock-exchange/lock-release. We derive expressions for the Froude number that are in good agreement with the widely employed expression by Benjamin. We then solve the equations numerically to illustrate how quickly the proposed model converges to solutions of the full two-layer shallow-water equations. We also compare numerical results using our model with results from dam break experiments. Predictions from the one-layer model are found to be in good agreement with experiments.Comment: 23 pages, 17 figure

    Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The endogenous circadian clock allows the organism to synchronize processes both to daily and seasonal changes. In plants, many metabolic processes such as photosynthesis, as well as photoperiodic responses, are under the control of a circadian clock. Comparative studies with the moss <it>Physcomitrella patens </it>provide the opportunity to study many aspects of land plant evolution. Here we present a comparative overview of clock-associated components and the circadian network in the moss <it>P. patens</it>.</p> <p>Results</p> <p>The moss <it>P. patens </it>has a set of conserved circadian core components that share genetic relationship and gene expression patterns with clock genes of vascular plants. These genes include Myb-like transcription factors <it>PpCCA1a </it>and <it>PpCCA1b</it>, pseudo-response regulators <it>PpPRR1-4</it>, and regulatory elements <it>PpELF3</it>, <it>PpLUX </it>and possibly <it>PpELF4</it>. However, the moss lacks homologs of <it>AtTOC1</it>, <it>AtGI </it>and the <it>AtZTL</it>-family of genes, which can be found in all vascular plants studied here. These three genes constitute essential components of two of the three integrated feed-back loops in the current model of the Arabidopsis circadian clock mechanism. Consequently, our results suggest instead a single loop circadian clock in the moss. Possibly as a result of this, temperature compensation of core clock gene expression appears to be decreased in <it>P. patens.</it></p> <p>Conclusions</p> <p>This study is the first comparative overview of the circadian clock mechanism in a basal land plant, the moss <it>P. patens</it>. Our results indicate that the moss clock mechanism may represent an ancestral state in contrast to the more complex and partly duplicated structure of subsequent land plants. These findings may provide insights into the understanding of the evolution of circadian network topology.</p

    Physiological routes from intra-uterine seminal contents to advancement of ovulation

    Get PDF
    Whole boar semen or seminal plasma has been demonstrated to advance the time of ovulation in gilts. As a means of clarifying this influence, the contribution of uterine lymphatics and their white cell populations has been examined. After duct visualisation with Evan's blue, lymph was sampled from a mesometrial vessel in eight pre-ovulatory gilts whose uterine lumen was infused simultaneously with whole semen in one ligated horn and saline in the contralateral ligated horn. Lymph was collected from cannulated vessels for periods of up to four hours under general anaesthesia. Thereafter, mesometrial lymph nodes, utero-tubal junction and uterine wall tissues were sampled. The proportion of nucleated cells in the sampled lymph increased towards the end of the collection period, but erythrocytes were found in all instances preventing a meaningful differentiation and identification of leukocytes. Prominent uterine lymph nodes were present in the mesometrium on both sides of the reproductive tract in 7 of 10 gilts. Differences in cellular contents were demonstrated between the side of the tract infused with semen and that infused with saline control. Two of 4 gilts had lower values for CD4 (Cluster Differentiation) and 3 of 6 gilts higher values for MHC II (Major Histocompatibility Complex) markers on the side challenged with semen. In contrast, values remained constant for CD8 but ranged widely for CD18. Immunohistochemical analysis of uterine tissue samples for MHC II+ cells revealed significant differences (P < 0.05) between the control and semen-treated ligated portions of the horns, as well as between the tissue sample of uterine wall and that from the utero-tubal junction, but there were no significant differences for CD4+ cells. It therefore remains plausible that semen-induced cytokines in the uterine lymph undergo counter-current transfer to the ipsilateral ovary and accelerate the final maturation of pre-ovulatory Graafian follicles

    Adenosine Triphosphate (ATP) as a Metric of Microbial Biomass in Aquatic Systems: New Simplified Protocols, Laboratory Validation, and a Reflection on Data From the Literature

    Get PDF
    The use of adenosine triphosphate (ATP) as a universal biomass indicator is built on the premise that ATP concentration tracks biomass rather than the physiological condition of cells. However, reportedly high variability in ATP in response to environmental conditions is the main reason the method has not found widespread application. To test possible sources of this variability, we used the diatom Thalassiosira weissflogii as a model and manipulated its growth rate through nutrient limitation and through exposure to three different temperatures (15°C, 20°C, and 25°C). We simplified the ATP protocol with hot‐water or chemical extraction methods, modified a commercially available luciferin‐luciferase assay, and employed single‐photon counting in a scintillation counter, all of which increased sensitivity and throughput. Per‐cell ATP levels remained relatively constant despite changes in growth rates by approximately 10‐fold in the batch culture (i.e., nutrient limitation) experiments, and approximately 2‐fold in response to temperature. The re‐examination of related literature values revealed that average cellular ATP levels differed little among taxonomic groups of aquatic microbes, even at the domain level, and correlated well with bulk properties such as elemental carbon or nitrogen. Fulfilling multiple cellular functions in addition to being the universal energy currency requires ATP to be maintained in a millimolar concentration range. Consequently, ATP relates directly to live cytoplasm volume, while elemental carbon and nitrogen are constrained by an indeterminate pool of detrital material and intracellular storage compounds. The ATP‐biomass indicator is sensitive, economical, and can be readily standardized among laboratories and across environments

    Influenza A virus H10N7 detected in dead harbor seals (Phoca vitulina) at several locations in Denmark 2014.

    Get PDF
    Influenza A virus (IAV) affects a wide range of species, though waterfowl is regarded the natural host for most IAV subtypes. Avian influenza (AI) viruses replicate in the intestinal tract of birds and are mainly transmitted by the fecal-oral route. Pinnipeds share the same shoreline habitats as many waterfowl species and are therefore potentially exposed to AIV. Outbreaks of AI in seals have been described in North America and Asia but prior to 2014 never in Europe. In 2014 massive deaths of harbor seals (Phoca vitulina) were reported in Northern Europe. In Denmark, harbor seals were initially found dead on the Danish island Anholt in Kattegat, which is the sea surrounded by Denmark, Norway and Sweden. Between June and August, 152 harbor seals were found dead. Four seals were submitted to the National Veterinary Institute in Dennmark and diagnosed with severe pneumonia. Influenza A virus of the subtype H10N7 was detected in two out of four seals. Subsequently IAV was detected in dead harbor seals at several locations in Denmark. The IAV outbreak appeared to move with time to the west through the Limfjord to the North Sea and further down south along the west coast of Jutland to the Wadden Sea. Outbreaks were subsequently reported from Germany and The Netherlands. The aim of this study was to characterize the viruses detected at the several locations by molecular and phylogenetic analysis. All viruses were subtyped as H10N7 with genes of avian origin. The HA and NA genes of the viruses were highly similar to H10N7 IAV detected in harbor seals in Sweden in the spring of 2014 and in Germany in the autumn of 2014, suggesting that the same strain of virus had spread from Sweden to Denmark and further on to Germany

    Combination of linear classifiers using score function -- analysis of possible combination strategies

    Full text link
    In this work, we addressed the issue of combining linear classifiers using their score functions. The value of the scoring function depends on the distance from the decision boundary. Two score functions have been tested and four different combination strategies were investigated. During the experimental study, the proposed approach was applied to the heterogeneous ensemble and it was compared to two reference methods -- majority voting and model averaging respectively. The comparison was made in terms of seven different quality criteria. The result shows that combination strategies based on simple average, and trimmed average are the best combination strategies of the geometrical combination

    A combined fluid-dynamic and thermodynamic model to predict the onset of rapid phase transitions in LNG spills

    Get PDF
    Transport of liquefied natural gas (LNG) by ship occurs globally on a massive scale. The large temperature difference between LNG and water means LNG will boil violently if spilled onto water. This may cause a physical explosion known as rapid phase transition (RPT). Since RPT results from a complex interplay between physical phenomena on several scales, the risk of its occurrence is difficult to estimate. In this work, we present a combined fluid-dynamic and thermodynamic model to predict the onset of delayed RPT. On the basis of the full coupled model, we derive analytical solutions for the location and time of delayed RPT in an axisymmetric steady-state spill of LNG onto water. These equations are shown to be accurate when compared to simulation results for a range of relevant parameters. The relative discrepancy between the analytic solutions and predictions from the full coupled model is within 2% for the RPT position and within 8% for the time of RPT. This provides a simple procedure to quantify the risk of occurrence for delayed RPT for LNG on water. Due to its modular formulation, the full coupled model can straightforwardly be extended to study RPT in other systems.Comment: 22 pages, 11 figure
    • 

    corecore