19 research outputs found

    Calibration and data analysis strategies for enhanced 21-cm EoR limits with the MWA

    Get PDF
    This thesis targets observations of the 21 cm signal emitted by neural hydrogen during the early stages of the Universe using data from the Murchison Widefield Array radio telescope. The detection of this elusive signal is challenging, and this thesis tackles the obstacles involved, investigating current methods and proposing novel ones. The work presented by this research is therefore another step towards a complete understanding of the history of our Universe

    A 150 MHz all sky survey with the Precision Array to Probe the Epoch of Reionization

    Get PDF
    The Precision Array to Probe the Epoch of Reionization (PAPER) was built to measure the redshifted 21 cm line of hydrogen from cosmic reionization. Such low frequency observations promise to be the best means of understanding the cosmic dawn; when the first galaxies in the universe formed, and also the Epoch of Reionization; when the intergalactic medium changed from neutral to ionized. The major challenges to these observations is the presence of astrophysical foregrounds that are much brighter than the cosmological signal. Here, I present an all-sky survey at 150 MHz obtained from the analysis of 300 hours of PAPER observations. Particular focus is given to the calibration and imaging techniques that need to deal with the wide field of view of a non-tracking instrument. The survey covers ~ 7000 square degrees of the southern sky. From a sky area of 4400 square degrees out of the total survey area, I extract a catalogue of sources brighter than 4 Jy whose accuracy was tested against the published GLEAM catalogue, leading to a fractional difference rms better than 20%. The catalogue provides an all-sky accurate model of the extragalactic foreground to be used for the calibration of future Epoch of Reionization observations and to be subtracted from the PAPER observations themselves in order to mitigate the foreground contamination

    Resource allocation in non-orthogonal multiple access technologies for 5G networks and beyond.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The increasing demand of mobile and device connectivity poses challenging requirements for 5G wireless communications, such as high energy- and spectral-efficiency and low latency. This necessitates a shift from orthogonal multiple access (OMA) to Non-Orthogonal Multiple Access (NOMA) techniques, namely, power-domain NOMA (PD-NOMA) and code-domain NOMA (CD-NOMA). The basic idea behind NOMA schemes is to co-multiplex different users on the same resource elements (time slot, OFDMA sub-carrier, or spreading code) via power domain (PD) or code domain (CD) at the transmitter while permitting controllable interference, and their successful multi-user detection (MUD) at the receiver albeit, increased computational complexity. In this work, an analysis on the performance of the existing NOMA schemes is carried out. Furthermore, we investigate the feasibility of a proposed uplink hybrid-NOMA scheme namely power domain sparse code multiple access (PD-SCMA) that integrates PD-NOMA and CD-NOMA based sparse code multiple access (SCMA) on heterogeneous networks (HetNets). Such hybrid schemes come with resource allocation (RA) challenges namely; codebook allocation, user pairing and power allocation. Therefore, hybrid RA schemes namely: Successive Codebook Ordering Assignment (SCOA) for codebook assignment (CA), opportunistic macro cell user equipment (MUE)- small cell user equipment (SUE) pairing (OMSP) for user pairing (UP), and a QoS-aware power allocation (QAPA) for power allocation (PA) are developed for an energy efficient (EE) system. The performance of the RA schemes is analyzed alongside an analytical RA optimization algorithm. Through numerical results, the proposed schemes show significant improvements in the EE of the small cells in comparison with the prevalent schemes. Additionally, there is significant sum rate performance improvement over the conventional SCMA and PD-NOMA. Secondly, we investigate the multiplexing capacity of the hybrid PD-SCMA scheme in HetNets. Particularly, we investigate and derive closed-form solutions for codebook capacity, MUE multiplexing and power capacity bounds. The system’s performance results into low outage when the system’s point of operation is within the multiplexing bounds. To alleviate the RA challenges of such a system at the transmitter, dual parameter ranking (DPR) and alternate search method (ASM) based RA schemes are proposed. The results show significant capacity gain with DPR-RA in comparison with conventional RA schemes. Lastly, we investigate the feasibility of integrating the hybrid PD-SCMA with multiple-input multipleoutput (MIMO) technique namely, M-PD-SCMA. The attention to M-PD-SCMA resides in the need of lower number of antennas while preserving the system capacity thanks to the overload in PDSCMA. To enhance spectral efficiency and error performance we propose spatial multiplexing at the transmitter and a low complex joint MUD scheme based on successive interference cancellation (SIC) and expectation propagation algorithm (EPA) at the receiver are proposed. Numerical results exhibit performance benchmark with PD-SCMA schemes and the proposed receiver achieves guaranteed bit error rate (BER) performance with a bounded increase in the number of transmit and receive antennas. Thus, the feasibility of an M-PD-SCMA system is validated

    Accelerating the flow of new ideas to rural people, a proposal for a pilot extension training project in Nyeri

    Get PDF
    The present paper is subdivided in three sections. In the first section, an overview of the development of the Special Rural Development Programme, from its inception at the 1965 Kericho Conference, to the present time, is presented. In the second section, we focus our attention specifically upon the Tetu Division SEDP. We describe our rationale, methods of research design and major findings of the Tetu Extension Pilot Project baseline survey conducted in 1970. The final section is devoted to a proposal outlining an experimental strategy for increasing rural incomes via the acceleration of the flow of income-generating ideas and practices to small scale farmers

    KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization.

    Get PDF
    Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal-Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65-0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines

    KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization

    Get PDF
    Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples.The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p &lt; 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines

    A 150 MHz all sky survey with the Precision Array to Probe the Epoch of Reionization

    No full text
    The Precision Array to Probe the Epoch of Reionization (PAPER) was built to measure the redshifted 21 cm line of hydrogen from cosmic reionization. Such low frequency observations promise to be the best means of understanding the cosmic dawn; when the first galaxies in the universe formed, and also the Epoch of Reionization; when the intergalactic medium changed from neutral to ionized. The major challenges to these observations is the presence of astrophysical foregrounds that are much brighter than the cosmological signal. Here, I present an all-sky survey at 150 MHz obtained from the analysis of 300 hours of PAPER observations. Particular focus is given to the calibration and imaging techniques that need to deal with the wide field of view of a non-tracking instrument. The survey covers ~ 7000 square degrees of the southern sky. From a sky area of 4400 square degrees out of the total survey area, I extract a catalogue of sources brighter than 4 Jy whose accuracy was tested against the published GLEAM catalogue, leading to a fractional difference rms better than 20%. The catalogue provides an all-sky accurate model of the extragalactic foreground to be used for the calibration of future Epoch of Reionization observations and to be subtracted from the PAPER observations themselves in order to mitigate the foreground contamination

    New records for Orange-winged Pytilia Pytilia afra in central Kenya

    No full text
    Volume: 28Start Page: 45End Page: 4

    Simulations of ionospheric refraction on radio interferometric data

    No full text
    The Epoch of Reionisation (EoR) is the period within which the neutral universe transitioned to an ionised one. This period remains unobserved using low-frequency radio interferometers which target the 21 cm signal of neutral hydrogen emitted in this era. The Murchison Widefield Array (MWA) radio telescope was built with the detection of this signal as one of its major science goals. One of the most significant challenges towards a successful detection is that of calibration, especially in the presence of the Earth's ionosphere. By introducing refractive source shifts, distorting source shapes and scintillating flux densities, the ionosphere is a major nuisance in low-frequency radio astronomy. We introduce SIVIO, a software tool developed for simulating observations of the MWA through different ionospheric conditions estimated using thin screen approximation models and propagated into the visibilities. This enables us to directly assess the impact of the ionosphere on observed EoR data and the resulting power spectra. We show that the simulated data captures the dispersive behaviour of ionospheric effects. We show that the spatial structure of the simulated ionospheric media is accurately reconstructed either from the resultant source positional offsets or from parameters evaluated during the data calibration procedure. In turn, this will inform on the best strategies of identifying and efficiently eliminating ionospheric contamination in EoR data moving into the Square Kilometre Array era
    corecore