23 research outputs found

    Genes involved in the establishment of hepatic steatosis in Muscovy, Pekin and mule ducks

    No full text
    International audienceOur main objectives were to determine the genes involved in the establishment of hepatic steatosis in three genotypes of palmipeds. To respond to this question, we have compared Muscovy ducks, Pekin ducks and their crossbreed the mule duck fed ad libitum or overfed. We have shown a hepatic overexpression of fatty acid synthase (FAS) and di-acyl glycerol acyl transferase 2 (DGAT2) in overfed individuals, where DGAT2 seemed to be more regulated. This increase in lipogenesis genes is associated with a decrease of lipoprotein formation in Muscovy and mule ducks, especially apolipoprotein B (ApoB) and Microsomal Triglyceride Transfer Protein (MTTP), leading to lipid accumulation in liver. In Pekin ducks, MTTP expression is upregulated suggesting a better hepatic lipids exportation. Regarding lipids re-uptake, fatty acid-binding protein 4 and very-low-density-lipoprotein receptor are overexpressed in liver of mule ducks at the end of the overfeeding period. This phenomenon puts light on a mechanism unknown until today. In fact, mule can incorporate more lipids in liver than the two other genotypes leading to an intensified hepatic steatosis. To conclude, our results confirmed the genotype variability to overfeeding. Furthermore, similar observations are already described in non-alcoholic fatty liver disease in human, and ask if ducks could be an animal model to study hepatic triglyceride accumulation

    Pre- and post-prandial expression of genes involved in lipid metabolism at the end of the overfeeding period of mule ducks

    No full text
    In palmipeds, overfeeding leads to hepatic steatosis, also called ‘‘foie gras’’ which is the result of many metabolic mechanisms. In order to understand these mechanisms, we decided to measure the expression of genes implicated in lipid metabolism during 12 hours (h) following the last meal of the overfeeding period. We have shown that there is a precocious expression (within 2 h) of fatty acid synthase and acyl CoA synthetase longchain 1 in liver and muscle of mule ducks in addition with a later peak. Furthermore, di-acyl glycerol acyl transferase presents the highest induction of expression in liver and it is overexpressed quite a long time, positioning this enzyme as a key factor in hepatic steatosis. These observations are quite similar in muscle. Lipoprotein secretion is upregulated later in postprandial period, with an upregulation of apolipoprotein and microsomal triglycerides transfer protein beginning at 5 h in liver or muscle. Regarding hepatic re-uptake of lipid, lesser variations are observed, suggesting that fatty acid binding protein and very low-density lipoprotein receptor (VLDLR) are already at their maximum expression specifically in these tissues. In muscle, VLDLR and LDLR upregulation is observed 5 h after the meal, associated with an overexpression in the adipose tissue of lipase maturation factor 1 involved in the maturation of lipoprotein lipase. These findings will allow us to better understand the kinetic treatment in lipid metabolism after a meal in overfed ducks. This first report on kinetic expression will allow researcher to better target their sampling time knowing the optimal point of expression of each gen

    Kinetics of expression of genes involved in glucose metabolism after the last meal in overfed mule ducks

    No full text
    International audienceIn waterfowls, overfeeding leads to a hepatic steatosis, also called "foie gras." We decided to investigate the role of glucose metabolism in steatosis emergence. For this, we measured the expression of genes during the 12 h following the last meal of the overfeeding period. As expected, it showed that the expression of glucose transporter is more precocious in jejunal mucosa, especially for SGLT1, known to be the major transporter at the apical surface. In the liver, GLUT2 and HK1 are upregulated at the same time and seem to work together to import glucose. In peripherals tissues, such as muscle and subcutaneous adipose tissue (SAT), expression of genes of interest occurs later than the one in jejunum and liver. These results are in accordance with the evolution of glycemia. This study allows us to better understand the kinetic treatment of glucose after a meal in overfed ducks. It also will allow researchers to better target their sampling time knowing the optimal point of expression of each gene

    Inter genotype differences in expression of genes involved in glucose metabolism in the establishment of hepatic steatosis in Muscovy, Pekin and mule ducks

    No full text
    International audienceIn waterfowls, overfeeding leads to a hepatic steatosis, also called "foie gras". Our main objectives were to determine what is the share of genes involvement of glucose metabolism in the establishment of fatty liver in three genotypes of waterfowls: Muscovy (Cairina moschata), Pekin ducks (Anas platyrhynchos) and their crossbreed, the mule duck. 288 male ducks of Pekin, Muscovy and mule genotypes were reared until weeks 12 and overfed between weeks 12 and 14. We analysed gene expression at the beginning, the middle and the end of the overfeeding period in different tissues. We have shown an upregulation of glucose transporters (GLUT) in peripheral tissues (pectoralis major or adipose tissue) in Pekin ducks. In addition, GLUT2 was not found in jejunal mucosa and another GLUT seems to replace it 3 h after the meal: GLUT3. Mule ducks upregulating GLUT3 earlier compared to Pekin ducks. However, these results need further investigations. In liver, globally, Pekin ducks exhibit the highest expression of GLUT or enzymes implicated in glycolysis. The few significant variations of gene expressions in glucose metabolism between these three genotypes and the momentary specific overexpression of GLUT do not allow us to detect a lot of specific genotype differences. To conclude, the differences in response to overfeeding of Pekin, Muscovy and mule ducks, for the establishment of hepatic steatosis, cannot be only explained by the glucose metabolism at transcriptomic level

    Trace Element Concentrations (Mercury, Cadmium, Copper, Zinc, Lead, Aluminium, Nickel, Arsenic, and Selenium) in Some Aquatic Birds of the Southwest Atlantic Coast of France

    No full text
    International audienceTrace elements (mercury [Hg], cadmium [Cd], copper [Cu], zinc [Zn], lead [Pb], aluminium [Al], nickel [Ni], arsenic [As], and selenium [Se]) were investigated using inductively coupled plasma–mass spectrometry in liver, kidney, muscle, and feather of aquatic birds wintering or inhabiting the wetlands situated on the Southwest Atlantic coast of France. A majority of greylag geese, red knots, and grey plovers were collected from among hunter-shot animals. The relation between residue concentrations, age (juvenile vs. adult), and sex was investigated. Trace elements were lower than threshold levels of toxicity, except for Pb. Greylag geese sampled could be considered Pb-poisoned. These consequential levels of contamination could be the result of the ingestion of Pb-shot from ammunition used in hunting areas they crossed during migration. Cd accumulation increased with age, whereas Pb levels in feathers were lower in adult birds in connection with moulting. As was influenced by sex. Female birds displayed higher concentrations in liver and feathers than did male birds

    Impact of cadmium on aquatic bird Cairina moschata

    Get PDF
    International audienceThe impact on palmiped Cairina moschata of two levels of dietary cadmium (Cd) contamination (C1: 1 mg kg-1 and C10: 10 mg kg-1) was investigated on liver gene expression by real-time PCR. Genes involved in mitochondrial metabolism, in antioxidant defences, detoxification and in DNA damage repair were studied. Metallothionein (MT) protein levels and Cd bioaccumulation were also investigated in liver, kidneys and muscle. Male ducks were subjected to three periods of exposure: 10, 20 and 40 days. Cd was mainly bioaccumulated in kidneys first and in liver. The concentrations in liver and kidneys appeared to reach a stable level at 20 days of contamination even if the concentrations in muscle still increased. Cd triggered the enhancement of mitochon-drial metabolism, the establishment of antioxidant defences (superoxide dismutase Mn and Cu/Zn; catalase) and of DNA repair from 20 days of contamination. Discrepancies were observed in liver between MT protein levels and MT gene up-regulation. MT gene expression appeared to be a late hour biomarker

    Kinetic study of the expression of genes related to hepatic steatosis, glucose and lipid metabolism, and cellular stress during overfeeding in mule ducks

    No full text
    International audienceInduced by overfeeding, hepatic steatosis is a process exploited for the "foie gras" production in mule ducks. To better understand the mechanisms underlying its development, the physiological responses of mule ducks overfed with corn for a duration of 11 days were analyzed. A kinetic analysis of glucose and lipid metabolism and cell protection mechanisms was performed on 96 male mule ducks during overfeeding with three sampling times (after the 4th, the 12th, and the 22nd meal). Gene expression and protein analysis realized on the liver, muscle, and abdominal fat showed an activation of a cholesterol biosynthetic pathway during the complete overfeeding period mainly in livers with significant correlations between its weight and its cholesterolemia (r = 0.88; P < 0.0001) and between the liver weight and the hmgcr and soat1 expression (r = 0.4, P < 0.0001 and r = 0.67; P < 0.0001, respectively). Results also revealed an activation of insulin and amino acid cells signaling a pathway suggesting that ducks boost insulin sensitivity to raise glucose uptake and use via glycolysis and lipogenesis. Cellular stress analysis revealed an upregulation of key autophagy-related gene expression atg8 and sqstm1(P < 0.0001) during the complete overfeeding period, mainly in the liver, in contrast to an induction of cyp2e1(P < 0.0001), suggesting that autophagy could be suppressed during steatosis development. This study has highlighted different mechanisms enabling mule ducks to efficiently handle the starch overload by keeping its liver in a nonpathological state. Moreover, it has revealed potential biomarker candidates of hepatic steatosis as plasma cholesterol for the liver weight

    Concentrations en métaux chez trois génotypes de palmipÚdes : Pékin, Barbarie et Mulard

    No full text
    National audienceLe rĂŽle de facteurs tels que le type de matĂ©riel biologique (tissus, organes) et la condition trophique (gavage ou non) a Ă©tĂ© Ă©tudiĂ© dans l’accumulation des mĂ©taux chez trois gĂ©notypes de canards (PĂ©kin, Barbarie et mulards). Les canards domestiques possĂšdent des concentrations faibles en mĂ©taux mĂȘme si des niveaux non nĂ©gligeables sont enregistrĂ©s pour le cadmium. Les rĂ©sultats montrent que le gavage fait dĂ©croitre les concentrations en cadmium, cuivre et zinc par un processus de dilution. Au contraire, les concentrations en mercure, demeurant Ă  des niveaux trĂšs faibles, ont tendance Ă  augmenter avec le gavage. Ainsi, une relation entre le mĂ©tabolisme lipidique des gĂ©notypes et la distribution du mercure dans les tissus et organes a Ă©tĂ© trouvĂ©e. En effet, la concentration en mercure augmente dans les compartiments (foie ou pĂ©riphĂ©rie) qui accumulent de la graisse. L’impact de la condition trophique sur l’accumulation des mĂ©taux montre l’importance de prendre en compte le cycle de vie des oiseaux afin de pouvoir Ă©tudier leurs niveaux de contamination et l’impact des polluants

    Impacts of Embryonic Thermal Programming on the Expression of Genes Involved in Foie gras Production in Mule Ducks

    No full text
    International audienceEmbryonic thermal programming has been shown to improve foie gras production in overfed mule ducks. However, the mechanisms at the origin of this programming have not yet been characterized. In this study, we investigated the effect of embryonic thermal manipulation (+1°C, 16 h/24 h from embryonic (E) day 13 to E27) on the hepatic expression of genes involved in lipid and carbohydrate metabolisms, stress, cell proliferation and thyroid hormone pathways at the end of thermal manipulation and before and after overfeeding (OF) in mule ducks. Gene expression analyses were performed by classic or high throughput real-time qPCR. First, we confirmed well-known results with strong impact of OF on the expression of genes involved in lipid and carbohydrates metabolisms. Then we observed an impact of OF on the hepatic expression of genes involved in the thyroid pathway, stress and cell proliferation. Only a small number of genes showed modulation of expression related to thermal programming at the time of OF, and only one was also impacted at the end of the thermal manipulation. For the first time, we explored the molecular mechanisms of embryonic thermal programming from the end of heat treatment to the programmed adult phenotype with optimized liver metabolism
    corecore