30 research outputs found

    Unintentional guideline deviations in hospitalized patients with two or more antithrombotic agents:an intervention study

    Get PDF
    Purpose Treatment schedules for antithrombotic therapy are complex, and there is a risk of inappropriate prescribing or continuation of antithrombotic therapy beyond the intended period of time. The primary aim of this study was to determine the frequency of unintentional guideline deviations in hospitalized patients. Secondary aims were to determine whether the frequency of unintentional guideline deviations decreased after intervention by a pharmacist, to determine the acceptance rate of the interventions and to determine the type of interventions. Methods We performed a non-controlled prospective intervention study in three teaching hospitals in the Netherlands. We examined whether hospitalized patients who used the combination of an anticoagulant plus at least one other antithrombotic agent had an unintentional guideline deviation. In these cases, the hospital pharmacist contacted the physician to assess whether this deviation was intentional. If the deviation was unintentional, a recommendation was provided how to adjust the antithrombotic regimen according to guideline recommendations. Results Of the 988 included patients, 407 patients had an unintentional guideline deviation (41.2%). After intervention, this was reduced to 22 patients (2.2%) (p < 0.001). The acceptance rate of the interventions was 96.6%. The most frequently performed interventions were discontinuation of an low molecular weight heparin in combination with a direct oral anticoagulant and discontinuation of an antiplatelet agent when there was no indication for the combination of an antiplatelet agent and an anticoagulant. Conclusion A significant number of hospitalized patients who used an anticoagulant plus one other antithrombotic agent had an unintentional guideline deviation. Intervention by a pharmacist decreased unintentional guideline deviations

    The Tumor Immune Landscape and Architecture of Tertiary Lymphoid Structures in Urothelial Cancer

    Full text link
    Candidate immune biomarkers have been proposed for predicting response to immunotherapy in urothelial cancer (UC). Yet, these biomarkers are imperfect and lack predictive power. A comprehensive overview of the tumor immune contexture, including Tertiary Lymphoid structures (TLS), is needed to better understand the immunotherapy response in UC. We analyzed tumor sections by quantitative multiplex immunofluorescence to characterize immune cell subsets in various tumor compartments in tumors without pretreatment and tumors exposed to preoperative anti-PD1/CTLA-4 checkpoint inhibitors (NABUCCO trial). Pronounced immune cell presence was found in UC invasive margins compared to tumor and stroma regions. CD8+PD1+ T-cells were present in UC, particularly following immunotherapy. The cellular composition of TLS was assessed by multiplex immunofluorescence (CD3, CD8, FoxP3, CD68, CD20, PanCK, DAPI) to explore specific TLS clusters based on varying immune subset densities. Using a k-means clustering algorithm, we found five distinct cellular composition clusters. Tumors unresponsive to anti-PD-1/CTLA-4 immunotherapy showed enrichment of a FoxP3+ T-cell-low TLS cluster after treatment. Additionally, cluster 5 (macrophage low) TLS were significantly higher after pre-operative immunotherapy, compared to untreated tumors. We also compared the immune cell composition and maturation stages between superficial (submucosal) and deeper TLS, revealing that superficial TLS had more pronounced T-helper cells and enrichment of early TLS than TLS located in deeper tissue. Furthermore, superficial TLS displayed a lower fraction of secondary follicle like TLS than deeper TLS. Taken together, our results provide a detailed quantitative overview of the tumor immune landscape in UC, which can provide a basis for further studies

    An Immune Atlas of Clear Cell Renal Cell Carcinoma

    Get PDF
    Immune cells in the tumor microenvironment modulate cancer progression and are attractive therapeutic targets. Macrophages and T cells are key components of the microenvironment, yet their phenotypes and relationships in this ecosystem and to clinical outcomes are ill defined. We used mass cytometry with extensive antibody panels to perform in-depth immune profiling of samples from 73 clear cell renal cell carcinoma (ccRCC) patients and five healthy controls. In 3.5 million measured cells, we identified 17 tumor-associated macrophage phenotypes, 22 T cell phenotypes, and a distinct immune composition correlated with progression-free survival, thereby presenting an in-depth human atlas of the immune tumor microenvironment in this disease. This study revealed potential biomarkers and targets for immunotherapy development and validated tools that can be used for immune profiling of other tumor types.ISSN:0092-8674ISSN:1097-417

    Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma

    Full text link
    In solid tumors, the presence of lymph node-like structures called tertiary lymphoid structures (TLS) is associated with improved patient survival. However, little is known about how TLS form in cancer, how their function affects survival, and whether they are affected by cancer therapy. In this study, we used multi-spectral microscopy, quantitative pathology and gene expression profiling to analyze TLS formation in human lung squamous cell carcinoma (LSCC) and in an experimental model of lung TLS induction. We identified a niche of CXCL13+ perivascular and CXCL12+LTB+ and PD-L1+ epithelial cells supporting TLS formation. We also characterized sequential stages of TLS maturation in LSCC culminating in the formation of germinal centers (GC). In untreated patients, TLS density was the strongest independent prognostic marker. Further, TLS density correlated with GC formation and expression of adaptive immune response-related genes. In patients treated with neoadjuvant chemotherapy, TLS density was similar but GC formation was impaired and the prognostic value of TLS density was lost. Corticosteroids are co-administered with chemotherapy to manage side effects in LSCC patients, so we evaluated whether they impaired TLS development independently of chemotherapy. TLS density and GC formation were each reduced in chemotherapy-naive LSCC patients treated with corticosteroids before surgery, compared to untreated patients, a finding that we confirmed in the experimental model of lung TLS induction. Overall, our results highlight the importance of GC formation in TLS during tumor development and treatment

    Jdpd: an open java simulation kernel for molecular fragment dissipative particle dynamics

    No full text
    Abstract Jdpd is an open Java simulation kernel for Molecular Fragment Dissipative Particle Dynamics with parallelizable force calculation, efficient caching options and fast property calculations. It is characterized by an interface and factory-pattern driven design for simple code changes and may help to avoid problems of polyglot programming. Detailed input/output communication, parallelization and process control as well as internal logging capabilities for debugging purposes are supported. The new kernel may be utilized in different simulation environments ranging from flexible scripting solutions up to fully integrated “all-in-one” simulation systems

    Quantitative Estimation of Cyclotide-Induced Bilayer Membrane Disruption by Lipid Extraction with Mesoscopic Simulation

    No full text
    Cyclotide-induced membrane disruption is studied at the microsecond timescale by Dissipative Particle Dynamics (DPD) to quantitatively estimate a kinetic rate constant for membrane lipid extraction with a “sandwich” interaction model where two bilayer membranes enclose a cyclotide/water compartment. The obtained bioactivity trends for cyclotides Kalata B1, Cycloviolacin O2 and selected mutants with different membrane types are in agreement with experimental findings: For all membranes investigated, Cycloviolacin O2 shows a higher lipid extraction activity than Kalata B1. The presence of cholesterol leads to a decreased cyclotide activity compared to cholesterol-free membranes. Phosphoethanolamine-rich membranes exhibit an increased membrane disruption. A cyclotide’s “hydrophobic patch” surface area is important for its bioactivity. A replacement of or with charged amino acid residues may lead to super-mutants with above-native activity but without simple charge-activity patterns. Cyclotide mixtures show linearly additive bioactivities without significant sub- or over-additive effects.<br /

    Renal cell carcinoma pathology in 2021: ‘new need for renal cancer immune profiling’

    Full text link
    Purpose of review The aim of this review is to outline characteristics of the renal cell carcinoma (RCC) tumor immune microenvironment (TIME), the potential impact of tumor intrinsic alterations on the TIME and the value of metastatic tissue assessment in this context. Recent findings According to the latest European Association of Urology, European Society for Medical Oncology and National Comprehensive Cancer Network guidelines immune checkpoint inhibition represents a new core treatment strategy in advanced clear cell RCC (ccRCC). Despite its success, the prognosis of many RCC patients remains unsatisfactory most likely because of resistance mechanisms within the TIME. Moreover, most studies assess the primary tumor even though the advanced metastatic disease is targeted. Overall, metastatic RCC has hardly been investigated. First insights into the complexity of the genomic and immune landscape in RCC were recently provided. The functional impact of tumor intrinsic alterations on the TIME has just been described potentially contributing to therapy response in RCC. Summary The complexity of the RCC TIME and its potential interdependence with tumor intrinsic alterations has only just been recognized. A deeper understanding of the TIME may reveal predictive and prognostic biomarkers long-awaited in RCC, improve RCC patient stratification and could possibly be most instructive if assessed in metastatic tissue

    SPICES: a particle-based molecular structure line notation and support library for mesoscopic simulation

    No full text
    Abstract Simplified Particle Input ConnEction Specification (SPICES) is a particle-based molecular structure representation derived from straightforward simplifications of the atom-based SMILES line notation. It aims at supporting tedious and error-prone molecular structure definitions for particle-based mesoscopic simulation techniques like Dissipative Particle Dynamics by allowing for an interplay of different molecular encoding levels that range from topological line notations and corresponding particle-graph visualizations to 3D structures with support of their spatial mapping into a simulation box. An open Java library for SPICES structure handling and mesoscopic simulation support in combination with an open Java Graphical User Interface viewer application for visual topological inspection of SPICES definitions are provided

    Molecular, Immunological, and Clinical Features Associated With Lymphoid Neogenesis in Muscle Invasive Bladder Cancer

    Full text link
    Lymphoid neogenesis gives rise to tertiary lymphoid structures (TLS) in the periphery of multiple cancer types including muscle invasive bladder cancer (MIBC) where it has positive prognostic and predictive associations. Here, we explored molecular, clinical, and histological data of The Cancer Genome Atlas, as well as the IMvigor210 dataset to study factors associated with TLS development and function in the tumor microenvironment (TME) of MIBC. We also analyzed tumor immune composition including TLS in an independent, retrospective MIBC cohort. We found that the combination of TLS density and tumor mutational burden provides a novel independent prognostic biomarker in MIBC. Gene expression profiles obtained from intratumoral regions that rarely contain TLS in MIBC showed poor correlation with the prognostic TLS density measured in tumor periphery. Tumors with high TLS density showed increased gene signatures as well as infiltration of activated lymphocytes. Intratumoral B-cell and CD8+ T-cell co-infiltration was frequent in TLS-high samples, and such regions harbored the highest proportion of PD-1+TCF1+ progenitor-like T cells, naĂŻve T cells, and activated B cells when compared to regions predominantly infiltrated by either B cells or CD8+ T cells alone. We found four TLS maturation subtypes; however, differences in TLS composition appeared to be dictated by the TME and not by the TLS maturation status. Finally, we identified one downregulated and three upregulated non-immune cell-related genes in TME with high TLS density, which may represent candidates for tumor-intrinsic regulation of lymphoid neogenesis. Our study provides novel insights into TLS-associated gene expression and immune contexture of MIBC and indicates towards the relevance of B-cell and CD8+ T-cell interactions in anti-tumor immunity within and outside TLS

    Archiving and publishing of research data: The role of digital repositories, taking the example of the RADAR project

    Get PDF
    DisziplinĂŒbergreifendes Forschungsdatenmanagement fĂŒr Hochschulbibliotheken und Projekte zu vereinfachen und zu etablieren – das ist das Ziel von RADAR. Im Sommer 2016 geht mit ‚RADAR – Research Data Repository‘ ein Service an den Start, der Forschenden, Institutionen verschiedener Fachdisziplinen und Verlagen eine generische Infrastruktur fĂŒr die Archivierung und Publikation von Forschungsdaten anbietet. Zu den Dienstleistungen gehören u. a. die LangzeitverfĂŒgbarkeit der Daten mit Handle oder Digital Object Identifier (DOI), ein anpassbares Rollen- und Zugriffsrechtemanagement, eine optionale Peer-Review-Funktion und Zugriffsstatistiken. Das GeschĂ€ftsmodell ermutigt Forschende, die anfallenden NutzungsgebĂŒhren des Repositoriums in DrittmittelantrĂ€ge und DatenmanagementplĂ€ne zu integrieren. Publizierte Daten stehen als Open Data zur Nachnutzung wie etwa Data Mining, Metadaten-Harvesting und VerknĂŒpfung mit Suchportalen zur VerfĂŒgung. Diese Vernetzung ermöglicht ein nachhaltiges Forschungsdatenmanagement und die Etablierung von Dateninfrastrukturen wie RADAR.The goal of RADAR is to simplify and establish inter-disciplinary research data management for university libraries and projects. In summer 2016‚ ‘RADAR – Research Data Repository‘ starts as a service that offers researchers, institutions of different disciplines and publishers a generic infrastructure for archiving and publishing their research data. Among others, services are long-term data availability with Handle or Digital Object Identifier (DOI), an adaptable role and access rights management, an optional peer review function and access statistics. The business model encourages researchers to integrate arising charges for using the repository into applications for Third-Party funding and data management plans. Published data are available as Open Data to be used by Data Mining, metadata harvesting or linking with search portals. This interlinking enables a sustainable research data management and the establishment of data infrastructures like RADAR
    corecore